These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 25194233)
1. To pool or not to pool? Impact of the use of individual and pooled fecal samples for in vitro fermentation studies. Aguirre M; Ramiro-Garcia J; Koenen ME; Venema K J Microbiol Methods; 2014 Dec; 107():1-7. PubMed ID: 25194233 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of an optimal preparation of human standardized fecal inocula for in vitro fermentation studies. Aguirre M; Eck A; Koenen ME; Savelkoul PH; Budding AE; Venema K J Microbiol Methods; 2015 Oct; 117():78-84. PubMed ID: 26222994 [TBL] [Abstract][Full Text] [Related]
3. The Gut Microbiota from Lean and Obese Subjects Contribute Differently to the Fermentation of Arabinogalactan and Inulin. Aguirre M; Bussolo de Souza C; Venema K PLoS One; 2016; 11(7):e0159236. PubMed ID: 27410967 [TBL] [Abstract][Full Text] [Related]
4. In vitro fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota. Xie Z; Wang S; Wang Z; Fu X; Huang Q; Yuan Y; Wang K; Zhang B Carbohydr Polym; 2019 Nov; 223():115069. PubMed ID: 31426996 [TBL] [Abstract][Full Text] [Related]
5. Novel Polyfermentor intestinal model (PolyFermS) for controlled ecological studies: validation and effect of pH. Zihler Berner A; Fuentes S; Dostal A; Payne AN; Vazquez Gutierrez P; Chassard C; Grattepanche F; de Vos WM; Lacroix C PLoS One; 2013; 8(10):e77772. PubMed ID: 24204958 [TBL] [Abstract][Full Text] [Related]
6. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. Payne AN; Chassard C; Banz Y; Lacroix C FEMS Microbiol Ecol; 2012 Jun; 80(3):608-23. PubMed ID: 22324938 [TBL] [Abstract][Full Text] [Related]
7. Gut microbiota and environment in patients with major burns – a preliminary report. Shimizu K; Ogura H; Asahara T; Nomoto K; Matsushima A; Hayakawa K; Ikegawa H; Tasaki O; Kuwagata Y; Shimazu T Burns; 2015 May; 41(3):e28-33. PubMed ID: 25465986 [TBL] [Abstract][Full Text] [Related]
8. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Kovatcheva-Datchary P; Egert M; Maathuis A; Rajilić-Stojanović M; de Graaf AA; Smidt H; de Vos WM; Venema K Environ Microbiol; 2009 Apr; 11(4):914-26. PubMed ID: 19128319 [TBL] [Abstract][Full Text] [Related]
9. Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon. Fehlbaum S; Chassard C; Haug MC; Fourmestraux C; Derrien M; Lacroix C PLoS One; 2015; 10(11):e0142793. PubMed ID: 26559530 [TBL] [Abstract][Full Text] [Related]
10. Fecal microbiota of piglets prefer utilizing DL-lactate mixture as compared to D-lactate and L-lactate in vitro. Su Y; Li B; Zhu WY Anaerobe; 2013 Feb; 19():27-33. PubMed ID: 23201433 [TBL] [Abstract][Full Text] [Related]
11. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. Nordlund E; Aura AM; Mattila I; Kössö T; Rouau X; Poutanen K J Agric Food Chem; 2012 Aug; 60(33):8134-45. PubMed ID: 22731123 [TBL] [Abstract][Full Text] [Related]
12. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Kettle H; Louis P; Holtrop G; Duncan SH; Flint HJ Environ Microbiol; 2015 May; 17(5):1615-30. PubMed ID: 25142831 [TBL] [Abstract][Full Text] [Related]
13. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition. Ladirat SE; Schols HA; Nauta A; Schoterman MH; Keijser BJ; Montijn RC; Gruppen H; Schuren FH J Microbiol Methods; 2013 Mar; 92(3):387-97. PubMed ID: 23266580 [TBL] [Abstract][Full Text] [Related]
14. Arabinoxylo-Oligosaccharides and Inulin Impact Inter-Individual Variation on Microbial Metabolism and Composition, Which Immunomodulates Human Cells. Van den Abbeele P; Taminiau B; Pinheiro I; Duysburgh C; Jacobs H; Pijls L; Marzorati M J Agric Food Chem; 2018 Feb; 66(5):1121-1130. PubMed ID: 29363966 [TBL] [Abstract][Full Text] [Related]
15. New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. Cinquin C; Le Blay G; Fliss I; Lacroix C FEMS Microbiol Ecol; 2006 Aug; 57(2):324-36. PubMed ID: 16867149 [TBL] [Abstract][Full Text] [Related]
16. Preparation of a standardised faecal slurry for ex-vivo microbiota studies which reduces inter-individual donor bias. O'Donnell MM; Rea MC; O'Sullivan Ó; Flynn C; Jones B; McQuaid A; Shanahan F; Ross RP J Microbiol Methods; 2016 Oct; 129():109-116. PubMed ID: 27498348 [TBL] [Abstract][Full Text] [Related]
18. Dietary fibre and fermentability characteristics of root crops and legumes. Mallillin AC; Trinidad TP; Raterta R; Dagbay K; Loyola AS Br J Nutr; 2008 Sep; 100(3):485-8. PubMed ID: 18331664 [TBL] [Abstract][Full Text] [Related]
19. A comparative in vitro investigation into the effects of cooked meats on the human faecal microbiota. Shen Q; Chen YA; Tuohy KM Anaerobe; 2010 Dec; 16(6):572-7. PubMed ID: 20934523 [TBL] [Abstract][Full Text] [Related]
20. Short-chain fatty acids produced in vitro from fibre residues obtained from mixed diets containing different breads and in human faeces during the ingestion of the diets. Wisker E; Daniel M; Rave G; Feldheim W Br J Nutr; 2000 Jul; 84(1):31-7. PubMed ID: 10961158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]