BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25194416)

  • 1. Identification of redox partners and development of a novel chimeric bacterial nitric oxide synthase for structure activity analyses.
    Holden JK; Lim N; Poulos TL
    J Biol Chem; 2014 Oct; 289(42):29437-45. PubMed ID: 25194416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial flavodoxins support nitric oxide production by Bacillus subtilis nitric-oxide synthase.
    Wang ZQ; Lawson RJ; Buddha MR; Wei CC; Crane BR; Munro AW; Stuehr DJ
    J Biol Chem; 2007 Jan; 282(4):2196-202. PubMed ID: 17127770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence for nitric oxide production by a nitric-oxide synthase-like protein from Bacillus subtilis.
    Adak S; Aulak KS; Stuehr DJ
    J Biol Chem; 2002 May; 277(18):16167-71. PubMed ID: 11856757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a nitric oxide synthase heme protein from Bacillus subtilis.
    Pant K; Bilwes AM; Adak S; Stuehr DJ; Crane BR
    Biochemistry; 2002 Sep; 41(37):11071-9. PubMed ID: 12220171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular electron transfer from biopterin to Fe
    Kobayashi K; Ito YT; Kasu Y; Horitani M; Kozawa T
    J Inorg Biochem; 2023 Jan; 238():112035. PubMed ID: 36327499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FNR modules contribute to control nitric oxide synthase catalysis revealed by chimera enzymes.
    Wang R; Wang B; Zheng B; Ma P; Gou R; Guo Y; Chen F; Li H; Wang Y; Pu J; Tang L
    Mol Med Rep; 2017 Dec; 16(6):9263-9269. PubMed ID: 29039476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating nitric oxide synthase domain interactions by molecular dynamics.
    Hollingsworth SA; Holden JK; Li H; Poulos TL
    Protein Sci; 2016 Feb; 25(2):374-82. PubMed ID: 26448477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum.
    Agapie T; Suseno S; Woodward JJ; Stoll S; Britt RD; Marletta MA
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16221-6. PubMed ID: 19805284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the FAD/NADPH-binding domain of rat neuronal nitric-oxide synthase. Comparisons with NADPH-cytochrome P450 oxidoreductase.
    Zhang J; Martàsek P; Paschke R; Shea T; Siler Masters BS; Kim JJ
    J Biol Chem; 2001 Oct; 276(40):37506-13. PubMed ID: 11473123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry.
    Wolthers KR; Lou X; Toogood HS; Leys D; Scrutton NS
    Biochemistry; 2007 Oct; 46(42):11833-44. PubMed ID: 17892308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restricting the conformational freedom of the neuronal nitric-oxide synthase flavoprotein domain reveals impact on electron transfer and catalysis.
    Dai Y; Haque MM; Stuehr DJ
    J Biol Chem; 2017 Apr; 292(16):6753-6764. PubMed ID: 28232486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles.
    Wang ZQ; Wei CC; Sharma M; Pant K; Crane BR; Stuehr DJ
    J Biol Chem; 2004 Apr; 279(18):19018-25. PubMed ID: 14976216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI.
    Lawson RJ; von Wachenfeldt C; Haq I; Perkins J; Munro AW
    Biochemistry; 2004 Oct; 43(39):12390-409. PubMed ID: 15449930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of electron transfer in neuronal NO synthase.
    Daff S; Noble MA; Craig DH; Rivers SL; Chapman SK; Munro AW; Fujiwara S; Rozhkova E; Sagami I; Shimizu T
    Biochem Soc Trans; 2001 May; 29(Pt 2):147-52. PubMed ID: 11356143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences.
    Roman LJ; McLain J; Masters BS
    J Biol Chem; 2003 Jul; 278(28):25700-7. PubMed ID: 12730215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes.
    Wang M; Roberts DL; Paschke R; Shea TM; Masters BS; Kim JJ
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8411-6. PubMed ID: 9237990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The function of the small insertion in the hinge subdomain in the control of constitutive mammalian nitric-oxide synthases.
    Jones RJ; Smith SM; Gao YT; DeMay BS; Mann KJ; Salerno KM; Salerno JC
    J Biol Chem; 2004 Aug; 279(35):36876-83. PubMed ID: 15210721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human neuronal nitric-oxide synthase and inducible nitric-oxide synthase flavin domains.
    Guan ZW; Kamatani D; Kimura S; Iyanagi T
    J Biol Chem; 2003 Aug; 278(33):30859-68. PubMed ID: 12777376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.