These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 25194659)

  • 41. Agent-based modeling of morphogenetic systems: Advantages and challenges.
    Glen CM; Kemp ML; Voit EO
    PLoS Comput Biol; 2019 Mar; 15(3):e1006577. PubMed ID: 30921323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Homeoprotein signaling in the developing and adult nervous system.
    Prochiantz A; Di Nardo AA
    Neuron; 2015 Mar; 85(5):911-25. PubMed ID: 25741720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physical interpretation of mean local accumulation time of morphogen gradient formation.
    Berezhkovskii AM; Shvartsman SY
    J Chem Phys; 2011 Oct; 135(15):154115. PubMed ID: 22029305
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Free boundary morphogenesis in living matter.
    Ciarletta P
    Eur Biophys J; 2012 Aug; 41(8):681-6. PubMed ID: 22782184
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms of directed evolution of morphological structures and the problems of morphogenesis.
    Melkikh AV; Khrennikov A
    Biosystems; 2018 Jun; 168():26-44. PubMed ID: 29758243
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutions equations in computational anatomy.
    Younes L; Arrate F; Miller MI
    Neuroimage; 2009 Mar; 45(1 Suppl):S40-50. PubMed ID: 19059343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A numerical algorithm for modeling cellular rearrangements in tissue morphogenesis.
    Mohammad RZ; Murakawa H; Svadlenka K; Togashi H
    Commun Biol; 2022 Mar; 5(1):239. PubMed ID: 35304570
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A bifurcation analysis of pattern formation in a diffusion governed morphogenetic field.
    Granero MI; Porati A; Zanacca D
    J Math Biol; 1977 Feb; 4(1):21-7. PubMed ID: 845509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational, theoretical, and experimental approaches to morphogenesis.
    Igamberdiev AU; Gordon R; Alicea B; Cherdantsev VG
    Biosystems; 2018 Nov; 173():1-3. PubMed ID: 30278202
    [No Abstract]   [Full Text] [Related]  

  • 50. The unappreciated generative role of cell movements in pattern formation.
    Fulton T; Verd B; Steventon B
    R Soc Open Sci; 2022 Apr; 9(4):211293. PubMed ID: 35601454
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mathematical models for morphogenesis: linear or nonlinear diffusion: comment on "Morphogenetic action through flux-limited spreading" by Verbeni, Sánchez, Mollica, Siegl-Cachedenier, Carleton, Guerrero, Ruiz i Altaba, Soler.
    Jabin PE
    Phys Life Rev; 2013 Dec; 10(4):485-6; discussion 495-7. PubMed ID: 24140027
    [No Abstract]   [Full Text] [Related]  

  • 52. Commentary to the paper "Morphogenetic action through flux-limited spreading".
    Bellouquid A
    Phys Life Rev; 2013 Dec; 10(4):487-8; discussion 495-7. PubMed ID: 24008141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flux-limited equations arising in biology: comment on "Morphogenetic action through flux-limited spreading" by M. Verbeni et al.
    Perthame B
    Phys Life Rev; 2013 Dec; 10(4):476-7; discussion 495-7. PubMed ID: 24011624
    [No Abstract]   [Full Text] [Related]  

  • 54. Brain activity.
    Nat Nanotechnol; 2014 Feb; 9(2):85. PubMed ID: 24496271
    [No Abstract]   [Full Text] [Related]  

  • 55. Mixed analytical-stochastic simulation method for the recovery of a Brownian gradient source from probability fluxes to small windows.
    Dobramysl U; Holcman D
    J Comput Phys; 2018 Feb; 355():22-36. PubMed ID: 29456262
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reconstructing the gradient source position from steady-state fluxes to small receptors.
    Dobramysl U; Holcman D
    Sci Rep; 2018 Jan; 8(1):941. PubMed ID: 29343770
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation.
    Delile J; Herrmann M; Peyriéras N; Doursat R
    Nat Commun; 2017 Jan; 8():13929. PubMed ID: 28112150
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine.
    Pietak A; Levin M
    Front Bioeng Biotechnol; 2016; 4():55. PubMed ID: 27458581
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational and mathematical methods for morphogenetic gradient analysis, boundary formation and axonal targeting.
    Reingruber J; Holcman D
    Semin Cell Dev Biol; 2014 Nov; 35():189-202. PubMed ID: 25194659
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling homeoprotein intercellular transfer unveils a parsimonious mechanism for gradient and boundary formation in early brain development.
    Holcman D; Kasatkin V; Prochiantz A
    J Theor Biol; 2007 Dec; 249(3):503-17. PubMed ID: 17904161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.