BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 25194662)

  • 41. Acidic organelles mediate TGF-β1-induced cellular fibrosis via (pro)renin receptor and vacuolar ATPase trafficking in human peritoneal mesothelial cells.
    Oba-Yabana I; Mori T; Takahashi C; Hirose T; Ohsaki Y; Kinugasa S; Muroya Y; Sato E; Nguyen G; Piedagnel R; Ronco PM; Totsune K; Ito S
    Sci Rep; 2018 Feb; 8(1):2648. PubMed ID: 29422602
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury.
    Chen YT; Chang YT; Pan SY; Chou YH; Chang FC; Yeh PY; Liu YH; Chiang WC; Chen YM; Wu KD; Tsai TJ; Duffield JS; Lin SL
    J Am Soc Nephrol; 2014 Dec; 25(12):2847-58. PubMed ID: 24854266
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tanshinone IIA attenuates peritoneal fibrosis through inhibition of fibrogenic growth factors expression in peritoneum in a peritoneal dialysis rat model.
    Chunming J; Miao Z; Cheng S; Nana T; Wei Z; Dongwei C; Yuan F
    Ren Fail; 2011; 33(3):355-62. PubMed ID: 21401363
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha.
    Balzer MS; Helmke A; Ackermann M; Casper J; Dong L; Hiss M; Kiyan Y; Rong S; Timrott K; von Vietinghoff S; Wang L; Haller H; Shushakova N
    Nephrol Dial Transplant; 2019 Jun; 34(6):947-960. PubMed ID: 30247663
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Blockade of thrombospondin-1 ameliorates high glucose-induced peritoneal fibrosis through downregulation of TGF-β1/Smad3 signaling pathway.
    Jiang N; Zhang Z; Shao X; Jing R; Wang C; Fang W; Mou S; Ni Z
    J Cell Physiol; 2020 Jan; 235(1):364-379. PubMed ID: 31236971
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parthenolide alleviates peritoneal fibrosis by inhibiting inflammation via the NF-κB/ TGF-β/Smad signaling axis.
    Zhang Y; Feng W; Peng X; Zhu L; Wang Z; Shen H; Chen C; Xiao L; Li S; Zhao Y; Lin M; Huang Y; Long H; Liang J
    Lab Invest; 2022 Dec; 102(12):1346-1354. PubMed ID: 36307537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. N-methylpiperazine-diepoxyovatodiolide ameliorates peritoneal fibrosis via suppressing TGF-β/Smad and JAK/STAT signaling pathway.
    Mo M; Zeng Y; Zeng Y; Li S; He X; Chen X; Luo Q; Liu M; Luo C; Dou X; Peng F; Long H
    Chem Biol Interact; 2023 Sep; 382():110589. PubMed ID: 37268199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Caveolin1 and YAP drive mechanically induced mesothelial to mesenchymal transition and fibrosis.
    Strippoli R; Sandoval P; Moreno-Vicente R; Rossi L; Battistelli C; Terri M; Pascual-Antón L; Loureiro M; Matteini F; Calvo E; Jiménez-Heffernan JA; Gómez MJ; Jiménez-Jiménez V; Sánchez-Cabo F; Vázquez J; Tripodi M; López-Cabrera M; Del Pozo MÁ
    Cell Death Dis; 2020 Aug; 11(8):647. PubMed ID: 32811813
    [TBL] [Abstract][Full Text] [Related]  

  • 49. IL-6
    Yang X; Yan H; Jiang N; Yu Z; Yuan J; Ni Z; Fang W
    Am J Physiol Renal Physiol; 2020 Feb; 318(2):F338-F353. PubMed ID: 31841386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Suramin inhibits the development and progression of peritoneal fibrosis.
    Xiong C; Liu N; Fang L; Zhuang S; Yan H
    J Pharmacol Exp Ther; 2014 Nov; 351(2):373-82. PubMed ID: 25168661
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Network-based integrated analysis of omics data reveal novel players of TGF-β1-induced EMT in human peritoneal mesothelial cells.
    Han SM; Ryu HM; Suh J; Lee KJ; Choi SY; Choi S; Kim YL; Huh JY; Ha H
    Sci Rep; 2019 Feb; 9(1):1497. PubMed ID: 30728376
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel long non-coding RNA AV310809 promotes TGF-β1 induced epithelial-mesenchymal transition of human peritoneal mesothelial cells via activation of the Wnt2/β-catenin signaling pathway.
    Wei X; Huang H; Bao Y; Zhan X; Zhang L; Guo R; Hu N; Chen Q; Zhou J
    Biochem Biophys Res Commun; 2019 May; 513(1):119-126. PubMed ID: 30935692
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Opposing roles for Smad2 and Smad3 in peritoneal fibrosis in vivo and in vitro.
    Duan WJ; Yu X; Huang XR; Yu JW; Lan HY
    Am J Pathol; 2014 Aug; 184(8):2275-84. PubMed ID: 24925688
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TGF-β1 promotes lymphangiogenesis during peritoneal fibrosis.
    Kinashi H; Ito Y; Mizuno M; Suzuki Y; Terabayashi T; Nagura F; Hattori R; Matsukawa Y; Mizuno T; Noda Y; Nishimura H; Nishio R; Maruyama S; Imai E; Matsuo S; Takei Y
    J Am Soc Nephrol; 2013 Oct; 24(10):1627-42. PubMed ID: 23990681
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Establishment of a novel mouse peritoneal dialysis-associated peritoneal injury model.
    Yu F; Chen J; Wang X; Cai Q; Luo J; Wang L; Chen K; He Y
    Clin Exp Nephrol; 2022 Jul; 26(7):649-658. PubMed ID: 35353282
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis.
    Washida N; Wakino S; Tonozuka Y; Homma K; Tokuyama H; Hara Y; Hasegawa K; Minakuchi H; Fujimura K; Hosoya K; Hayashi K; Itoh H
    Nephrol Dial Transplant; 2011 Sep; 26(9):2770-9. PubMed ID: 21378147
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis.
    Strippoli R; Loureiro J; Moreno V; Benedicto I; Pérez Lozano ML; Barreiro O; Pellinen T; Minguet S; Foronda M; Osteso MT; Calvo E; Vázquez J; López Cabrera M; del Pozo MA
    EMBO Mol Med; 2015 Jan; 7(1):102-23. PubMed ID: 25550395
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcitriol decreases TGF-β1 and angiotensin II production and protects against chlorhexide digluconate-induced liver peritoneal fibrosis in rats.
    Lee CJ; Subeq YM; Lee RP; Liou HH; Hsu BG
    Cytokine; 2014 Jan; 65(1):105-18. PubMed ID: 24210651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ST2 blockade mitigates peritoneal fibrosis induced by TGF-β and high glucose.
    Kim YC; Kim KH; Lee S; Jo JW; Park JY; Park MS; Tsogbadrakh B; Lee JP; Lee JW; Kim DK; Oh KH; Jang IJ; Kim YS; Cha RH; Yang SH
    J Cell Mol Med; 2019 Oct; 23(10):6872-6884. PubMed ID: 31397957
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anti-fibrotic effects of valproic acid in experimental peritoneal fibrosis.
    Costalonga EC; de Freitas LJ; Aragone DDSP; Silva FMO; Noronha IL
    PLoS One; 2017; 12(9):e0184302. PubMed ID: 28873458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.