These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 25194778)
1. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip. Kwak B; Ozcelikkale A; Shin CS; Park K; Han B J Control Release; 2014 Nov; 194():157-67. PubMed ID: 25194778 [TBL] [Abstract][Full Text] [Related]
2. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles. Ozcelikkale A; Moon HR; Linnes M; Han B Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28198106 [TBL] [Abstract][Full Text] [Related]
3. Three-Dimensional Lymphatics-on-a-Chip Reveals Distinct, Size-Dependent Nanoparticle Transport Mechanisms in Lymphatic Drug Delivery. Lu R; Lee BJ; Lee E ACS Biomater Sci Eng; 2024 Sep; 10(9):5752-5763. PubMed ID: 39176471 [TBL] [Abstract][Full Text] [Related]
4. Tunable Collagen Microfluidic Platform to Study Nanoparticle Transport in the Tumor Microenvironment. DeWitt MR; Rylander MN Methods Mol Biol; 2018; 1831():159-178. PubMed ID: 30051431 [TBL] [Abstract][Full Text] [Related]
5. Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model. Ozcelikkale A; Shin K; Noe-Kim V; Elzey BD; Dong Z; Zhang JT; Kim K; Kwon IC; Park K; Han B J Control Release; 2017 Nov; 266():129-139. PubMed ID: 28939108 [TBL] [Abstract][Full Text] [Related]
6. Gold nanoparticle delivery to solid tumors: a multiparametric study on particle size and the tumor microenvironment. Izci M; Maksoudian C; Gonçalves F; Aversa L; Salembier R; Sargsian A; Pérez Gilabert I; Chu T; Rios Luci C; Bolea-Fernandez E; Nittner D; Vanhaecke F; Manshian BB; Soenen SJ J Nanobiotechnology; 2022 Dec; 20(1):518. PubMed ID: 36494816 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Cell-Type-Specific Drug Transport and Resistance of Breast Cancers Using Tumor-Microenvironment-on-Chip. Shin K; Klosterhoff BS; Han B Mol Pharm; 2016 Jul; 13(7):2214-23. PubMed ID: 27228477 [TBL] [Abstract][Full Text] [Related]
8. Recapitulation of dynamic nanoparticle transport around tumors using a triangular multi-chamber tumor-on-a-chip. Chen Y; Xue Y; Xu L; Li W; Chen Y; Zheng S; Dai R; Liu J Lab Chip; 2022 Oct; 22(21):4191-4204. PubMed ID: 36172838 [TBL] [Abstract][Full Text] [Related]
9. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip. Han B; Qu C; Park K; Konieczny SF; Korc M Cancer Lett; 2016 Sep; 380(1):319-29. PubMed ID: 26688098 [TBL] [Abstract][Full Text] [Related]
10. Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles. Gao Y; Shi Y; Wang L; Kong S; Du J; Lin G; Feng Y Comput Methods Programs Biomed; 2020 Feb; 184():105106. PubMed ID: 31670178 [TBL] [Abstract][Full Text] [Related]
11. In vitro vascularized liver and tumor tissue microenvironments on a chip for dynamic determination of nanoparticle transport and toxicity. Ozkan A; Ghousifam N; Hoopes PJ; Yankeelov TE; Rylander MN Biotechnol Bioeng; 2019 May; 116(5):1201-1219. PubMed ID: 30636289 [TBL] [Abstract][Full Text] [Related]
12. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect. Podduturi VP; Magaña IB; O'Neal DP; Derosa PA Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689 [TBL] [Abstract][Full Text] [Related]
13. Synthetic tumor networks for screening drug delivery systems. Prabhakarpandian B; Shen MC; Nichols JB; Garson CJ; Mills IR; Matar MM; Fewell JG; Pant K J Control Release; 2015 Mar; 201():49-55. PubMed ID: 25599856 [TBL] [Abstract][Full Text] [Related]
14. Vascularized microfluidic platforms to mimic the tumor microenvironment. Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072 [TBL] [Abstract][Full Text] [Related]
15. Tumor-Microenvironment-on-a-Chip for Evaluating Nanoparticle-Loaded Macrophages for Drug Delivery. Wang HF; Liu Y; Wang T; Yang G; Zeng B; Zhao CX ACS Biomater Sci Eng; 2020 Sep; 6(9):5040-5050. PubMed ID: 33455297 [TBL] [Abstract][Full Text] [Related]
16. Pulsed focused ultrasound lowers interstitial fluid pressure and increases nanoparticle delivery and penetration in head and neck squamous cell carcinoma xenograft tumors. Mohammadabadi A; Huynh RN; Wadajkar AS; Lapidus RG; Kim AJ; Raub CB; Frenkel V Phys Med Biol; 2020 Jun; 65(12):125017. PubMed ID: 32460260 [TBL] [Abstract][Full Text] [Related]
17. Tumor-Microenvironment-on-Chip Platform for Assessing Drug Response in 3D Dynamic Culture. Aydin HB; Moon HR; Han B; Ozcelikkale A; Acar A Methods Mol Biol; 2024; 2764():265-278. PubMed ID: 38393600 [TBL] [Abstract][Full Text] [Related]
18. Simulation of transvascular transport of nanoparticles in tumor microenvironments for drug delivery applications. Shabbir F; Mujeeb AA; Jawed SF; Khan AH; Shakeel CS Sci Rep; 2024 Jan; 14(1):1764. PubMed ID: 38242952 [TBL] [Abstract][Full Text] [Related]
19. Enhanced uptake in 2D- and 3D- lung cancer cell models of redox responsive PEGylated nanoparticles with sensitivity to reducing extra- and intracellular environments. Conte C; Mastrotto F; Taresco V; Tchoryk A; Quaglia F; Stolnik S; Alexander C J Control Release; 2018 May; 277():126-141. PubMed ID: 29534890 [TBL] [Abstract][Full Text] [Related]
20. Dual functional matrix metalloproteinase-responsive curcumin-loaded nanoparticles for tumor-targeted treatment. Guo F; Fu Q; Jin C; Ji X; Yan Q; Yang Q; Wu D; Gao Y; Hong W; Li A; Yang G Drug Deliv; 2019 Dec; 26(1):1027-1038. PubMed ID: 31691601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]