BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25194799)

  • 1. Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets.
    Zhu B; Booth MA; Shepherd P; Sheppard A; Travas-Sejdic J
    Biosens Bioelectron; 2015 Feb; 64():74-80. PubMed ID: 25194799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical detection of DNA hybridization using a change in flexibility.
    Liu X; Qu X; Dong J; Ai S; Han R
    Biosens Bioelectron; 2011 Apr; 26(8):3679-82. PubMed ID: 21342760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment.
    Yang J; Yang T; Feng Y; Jiao K
    Anal Biochem; 2007 Jun; 365(1):24-30. PubMed ID: 17420003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex determination based on amelogenin DNA by modified electrode with gold nanoparticle.
    Mazloum-Ardakani M; Rajabzadeh N; Benvidi A; Heidari MM
    Anal Biochem; 2013 Dec; 443(2):132-8. PubMed ID: 24012619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and label-free electrochemical biosensor for DNA detection based on the super-sandwich assay.
    Zhou LY; Zhang XY; Wang GL; Jiao XX; Luo HQ; Li NB
    Analyst; 2012 Nov; 137(21):5071-5. PubMed ID: 23001115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltammetric and impedimetric DNA detection at single-use graphite electrodes modified with gold nanorods.
    Congur G; Sayar F; Erdem A; Piskin E
    Colloids Surf B Biointerfaces; 2013 Dec; 112():61-6. PubMed ID: 23958523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PNA versus DNA in electrochemical gene sensing based on conducting polymers: study of charge and surface blocking effects on the sensor signal.
    Zhu B; Travas-Sejdic J
    Analyst; 2018 Feb; 143(3):687-694. PubMed ID: 29297913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.
    Yumak T; Kuralay F; Muti M; Sinag A; Erdem A; Abaci S
    Colloids Surf B Biointerfaces; 2011 Sep; 86(2):397-403. PubMed ID: 21600741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Au(nano)-CNT/PAN(nano) films.
    Zhou N; Yang T; Jiang C; Du M; Jiao K
    Talanta; 2009 Jan; 77(3):1021-6. PubMed ID: 19064085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode.
    Li A; Yang F; Ma Y; Yang X
    Biosens Bioelectron; 2007 Mar; 22(8):1716-22. PubMed ID: 16959483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Label-Free Impedimetric DNA Sensor Based on a Nanoporous SnO₂ Film: Fabrication and Detection Performance.
    Le MH; Jimenez C; Chainet E; Stambouli V
    Sensors (Basel); 2015 May; 15(5):10686-704. PubMed ID: 25954951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrochemical DNA sensor based on polyaniline/graphene: high sensitivity to DNA sequences in a wide range.
    Zheng Q; Wu H; Shen Z; Gao W; Yu Y; Ma Y; Guang W; Guo Q; Yan R; Wang J; Ding K
    Analyst; 2015 Oct; 140(19):6660-70. PubMed ID: 26309910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.
    Benvidi A; Rajabzadeh N; Mazloum-Ardakani M; Heidari MM; Mulchandani A
    Biosens Bioelectron; 2014 Aug; 58():145-52. PubMed ID: 24632459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA hybridization electrochemical biosensor using a functionalized polythiophene.
    Uygun A
    Talanta; 2009 Jul; 79(2):194-8. PubMed ID: 19559864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-sensitivity, label-free DNA sensors using electrochemically active conducting polymers.
    Kannan B; Williams DE; Booth MA; Travas-Sejdic J
    Anal Chem; 2011 May; 83(9):3415-21. PubMed ID: 21466209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrochemical DNA sensor based on a layers-film construction modified electrode.
    Zhang Y; Zeng GM; Tang L; Li YP; Chen LJ; Pang Y; Li Z; Feng CL; Huang GH
    Analyst; 2011 Oct; 136(20):4204-10. PubMed ID: 21863170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual-signalling electrochemical DNA sensor based on target hybridization-induced change in DNA probe flexibility.
    Yang W; Lai RY
    Chem Commun (Camb); 2012 Sep; 48(69):8703-5. PubMed ID: 22825042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode.
    Fayazfar H; Afshar A; Dolati M; Dolati A
    Anal Chim Acta; 2014 Jul; 836():34-44. PubMed ID: 24974868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Demand Ligand-Base DNA Sensor with Electrochemical Impedance Spectroscopy.
    Han H; Sabani NB; Nobusawa K; Takei F; Nakatani K; Yamashita I
    Anal Chem; 2023 Jul; 95(26):9729-9733. PubMed ID: 37341999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.