BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 25194825)

  • 1. Infant trunk posture and arm movement assessment using pressure mattress, inertial and magnetic measurement units (IMUs).
    Rihar A; Mihelj M; Pašič J; Kolar J; Munih M
    J Neuroeng Rehabil; 2014 Sep; 11():133. PubMed ID: 25194825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infant posture and movement analysis using a sensor-supported gym with toys.
    Rihar A; Mihelj M; Pašič J; Sgandurra G; Cecchi F; Cioni G; Dario P; Munih M
    Med Biol Eng Comput; 2019 Feb; 57(2):427-439. PubMed ID: 30182216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing inertial measurement units and marker-based biomechanical models during dynamic rotation of the torso.
    Brice SM; Phillips EJ; Millett EL; Hunter A; Philippa B
    Eur J Sport Sci; 2020 Jul; 20(6):767-775. PubMed ID: 31512552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in Concurrent Validity of Two Independent Inertial Measurement Units Compared to Gold Standard for Upper Body Posture during Computerised Device Use.
    Lee R; Akhundov R; James C; Edwards S; Snodgrass SJ
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining inertial measurement unit placement for estimating human trunk sway while standing, walking and running.
    Bo Yu ; Tian Bao ; Dingguo Zhang ; Carender W; Sienko KH; Shull PB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4651-4. PubMed ID: 26737331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D trunk orientation measured using inertial measurement units during anatomical and dynamic sports motions.
    Brouwer NP; Yeung T; Bobbert MF; Besier TF
    Scand J Med Sci Sports; 2021 Feb; 31(2):358-370. PubMed ID: 33038047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of Inertial Measurement Units in the Evaluation of Trunk and Hand Kinematics in Baseball Hitting.
    Punchihewa NG; Miyazaki S; Chosa E; Yamako G
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33419341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of IMU position and orientation placement errors on ground reaction force estimation.
    Tan T; Chiasson DP; Hu H; Shull PB
    J Biomech; 2019 Dec; 97():109416. PubMed ID: 31630774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of an Inertial Sensor Algorithm to Quantify Head and Trunk Movement in Healthy Young Adults and Individuals with Mild Traumatic Brain Injury.
    Parrington L; Jehu DA; Fino PC; Pearson S; El-Gohary M; King LA
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30572640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mind the gap - development of conversion models between accelerometer- and IMU-based measurements of arm and trunk postures and movements in warehouse work.
    Forsman M; Fan X; Rhen IM; Lind CM
    Appl Ergon; 2022 Nov; 105():103841. PubMed ID: 35917697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward real-world evaluations of trunk exoskeletons using inertial measurement units.
    Tran MH; Kmecl P; Regmi Y; Dai B; Gorsic M; Novak D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():483-487. PubMed ID: 31374676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent validity and reliability of a novel wireless inertial measurement system to assess trunk movement.
    Bauer CM; Rast FM; Ernst MJ; Kool J; Oetiker S; Rissanen SM; Suni JH; Kankaanpää M
    J Electromyogr Kinesiol; 2015 Oct; 25(5):782-90. PubMed ID: 26126796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy and repeatability of an inertial measurement unit system for field-based occupational studies.
    Schall MC; Fethke NB; Chen H; Oyama S; Douphrate DI
    Ergonomics; 2016 Apr; 59(4):591-602. PubMed ID: 26256753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the validity and reliability of inertial measurement units for determining knee and trunk kinematics during athletic landing and cutting movements.
    Chia L; Andersen JT; McKay MJ; Sullivan J; Megalaa T; Pappas E
    J Electromyogr Kinesiol; 2021 Oct; 60():102589. PubMed ID: 34418582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.
    Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K
    J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis.
    Robert-Lachaine X; Mecheri H; Larue C; Plamondon A
    Gait Posture; 2017 May; 54():80-86. PubMed ID: 28279850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of inertial measurement unit placement in assessing upper limb motion.
    Höglund G; Grip H; Öhberg F
    Med Eng Phys; 2021 Jun; 92():1-9. PubMed ID: 34167702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable sensor validation of sports-related movements for the lower extremity and trunk.
    Dahl KD; Dunford KM; Wilson SA; Turnbull TL; Tashman S
    Med Eng Phys; 2020 Oct; 84():144-150. PubMed ID: 32977911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.