These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25194990)

  • 1. The role of metabolism in understanding the altitudinal segregation pattern of two potentially interacting lizards.
    Žagar A; Simčič T; Carretero MA; Vrezec A
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jan; 179():1-6. PubMed ID: 25194990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Living in sympatry: The effect of habitat partitioning on the thermoregulation of three Mediterranean lizards.
    Sagonas K; Kapsalas G; Valakos E; Pafilis P
    J Therm Biol; 2017 Apr; 65():130-137. PubMed ID: 28343566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting metabolic expenditure as a potential source of variation in growth rates of the sagebrush lizard.
    Sears MW
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Feb; 140(2):171-7. PubMed ID: 15748856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parasitemia and elevation as predictors of hemoglobin concentration and antioxidant capacity in two sympatric lizards.
    Žagar A; Simčič T; Dajčman U; Megía-Palma R
    Comp Biochem Physiol A Mol Integr Physiol; 2022 Aug; 270():111233. PubMed ID: 35589083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological differences in preferred temperatures and evaporative water loss rates in two sympatric lacertid species.
    Sannolo M; Barroso FM; Carretero MA
    Zoology (Jena); 2018 Feb; 126():58-64. PubMed ID: 29306684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lizards at the Peak: Physiological Plasticity Does Not Maintain Performance in Lizards Transplanted to High Altitude.
    Gangloff EJ; Sorlin M; Cordero GA; Souchet J; Aubret F
    Physiol Biochem Zool; 2019; 92(2):189-200. PubMed ID: 30714846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altitudinal variation in egg retention and rates of embryonic development in oviparous Zootoca vivipara fits predictions from the cold-climate model on the evolution of viviparity.
    Rodríguez-Díaz T; Braña F
    J Evol Biol; 2012 Sep; 25(9):1877-87. PubMed ID: 22862292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The peak of thermoregulation effectiveness: Thermal biology of the Pyrenean rock lizard, Iberolacerta bonnali (Squamata, Lacertidae).
    Ortega Z; Mencía A; Pérez-Mellado V
    J Therm Biol; 2016 Feb; 56():77-83. PubMed ID: 26857980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resting metabolic rates increase with elevation in a mountain-dwelling lizard.
    Plasman M; Bautista A; McCUE MD; DÍaz DE LA Vega-PÉrez AH
    Integr Zool; 2020 Sep; 15(5):363-374. PubMed ID: 32306560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological aspects of thermoregulation at high altitudes: the case of andean Liolaemus lizards in northern Chile.
    Marquet PA; Ortíz JC; Bozinovié F; Jaksié FM
    Oecologia; 1989 Oct; 81(1):16-20. PubMed ID: 28312150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of cranial ontogeny in lacertid lizards: morphological and allometric disparity.
    Urošević A; Ljubisavljević K; Ivanović A
    J Evol Biol; 2013 Feb; 26(2):399-415. PubMed ID: 23278889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics in Liolaemini lizards: implications of a small body size and ecological conservatism.
    Cruz FB; Antenucci D; Luna F; Abdala CS; Vega LE
    J Comp Physiol B; 2011 Apr; 181(3):373-82. PubMed ID: 21063713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interspecific Differences in Metabolic Rate and Metabolic Temperature Sensitivity Create Distinct Thermal Ecological Niches in Lizards (Plestiodon).
    Watson CM; Burggren WW
    PLoS One; 2016; 11(10):e0164713. PubMed ID: 27760215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition with wall lizards does not explain the alpine confinement of Iberian rock lizards: an experimental approach.
    Monasterio C; Salvador A; Díaz JA
    Zoology (Jena); 2010 Oct; 113(5):275-82. PubMed ID: 20934315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological variation in amethyst sunbirds (Chalcomitra amethystina) over an altitudinal gradient in winter.
    Lindsay CV; Downs CT; Brown M
    J Exp Biol; 2009 Feb; 212(Pt 4):483-93. PubMed ID: 19181895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daily patterns of metabolic rate among New Zealand lizards (Reptilia: Lacertilia: Diplodactylidae and Scincidae).
    Hare KM; Pledger S; Thompson MB; Miller JH; Daugherty CH
    Physiol Biochem Zool; 2006; 79(4):745-53. PubMed ID: 16826500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological variation in amethyst sunbirds (Chalcomitra amethystina) over an altitudinal gradient: a seasonal comparison.
    Lindsay C; Downs C; Brown M
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Apr; 152(4):593-8. PubMed ID: 19256084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy expenditure of the spotted snow skink, Niveoscincus ocellatus, at two climatic extremes of its distribution range.
    Yuni LP; Jones SM; Wapstra E
    J Therm Biol; 2015 Aug; 52():208-16. PubMed ID: 26267516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic metabolism and activity of European lacertid lizards.
    McClelland MH
    Comp Biochem Physiol A Comp Physiol; 1987; 87(4):1089-95. PubMed ID: 2887375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal dependence of feeding performance and resting metabolic expenditure in different altitudinal populations of toad-headed lizards.
    Hu YC; Lu HL; Cheng KM; Luo LG; Zeng ZG
    J Therm Biol; 2019 Feb; 80():16-20. PubMed ID: 30784481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.