These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25195048)

  • 1. Mechanochemical basis of protein degradation by a double-ring AAA+ machine.
    Olivares AO; Nager AR; Iosefson O; Sauer RT; Baker TA
    Nat Struct Mol Biol; 2014 Oct; 21(10):871-5. PubMed ID: 25195048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP.
    Miller JM; Lin J; Li T; Lucius AL
    J Mol Biol; 2013 Aug; 425(15):2795-812. PubMed ID: 23639359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine.
    Cordova JC; Olivares AO; Shin Y; Stinson BM; Calmat S; Schmitz KR; Aubin-Tam ME; Baker TA; Lang MJ; Sauer RT
    Cell; 2014 Jul; 158(3):647-58. PubMed ID: 25083874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClpAP proteolysis does not require rotation of the ClpA unfoldase relative to ClpP.
    Kim S; Zuromski KL; Bell TA; Sauer RT; Baker TA
    Elife; 2020 Dec; 9():. PubMed ID: 33258771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate.
    Fei X; Bell TA; Jenni S; Stinson BM; Baker TA; Harrison SC; Sauer RT
    Elife; 2020 Feb; 9():. PubMed ID: 32108573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational plasticity of the ClpAP AAA+ protease couples protein unfolding and proteolysis.
    Lopez KE; Rizo AN; Tse E; Lin J; Scull NW; Thwin AC; Lucius AL; Shorter J; Southworth DR
    Nat Struct Mol Biol; 2020 May; 27(5):406-416. PubMed ID: 32313240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Feb; 15(2):139-45. PubMed ID: 18223658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The activated ClpP peptidase forcefully grips a protein substrate.
    Walker SD; Olivares AO
    Biophys J; 2022 Oct; 121(20):3907-3916. PubMed ID: 36045571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Non-dominant AAA+ Ring in the ClpAP Protease Functions as an Anti-stalling Motor to Accelerate Protein Unfolding and Translocation.
    Kotamarthi HC; Sauer RT; Baker TA
    Cell Rep; 2020 Feb; 30(8):2644-2654.e3. PubMed ID: 32101742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine.
    Aubin-Tam ME; Olivares AO; Sauer RT; Baker TA; Lang MJ
    Cell; 2011 Apr; 145(2):257-67. PubMed ID: 21496645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hinge-Linker Elements in the AAA+ Protein Unfoldase ClpX Mediate Intersubunit Communication, Assembly, and Mechanical Activity.
    Bell TA; Baker TA; Sauer RT
    Biochemistry; 2018 Dec; 57(49):6787-6796. PubMed ID: 30418765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation.
    Baytshtok V; Chen J; Glynn SE; Nager AR; Grant RA; Baker TA; Sauer RT
    J Biol Chem; 2017 Apr; 292(14):5695-5704. PubMed ID: 28223361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine.
    Glynn SE; Nager AR; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2012 May; 19(6):616-22. PubMed ID: 22562135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ClpXP, an ATP-powered unfolding and protein-degradation machine.
    Baker TA; Sauer RT
    Biochim Biophys Acta; 2012 Jan; 1823(1):15-28. PubMed ID: 21736903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease.
    Zuromski KL; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25455-25463. PubMed ID: 33020301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation.
    Amor AJ; Schmitz KR; Baker TA; Sauer RT
    Protein Sci; 2019 Apr; 28(4):756-765. PubMed ID: 30767302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism of polypeptide translocation catalyzed by the Escherichia coli ClpA protein translocase.
    Rajendar B; Lucius AL
    J Mol Biol; 2010 Jun; 399(5):665-79. PubMed ID: 20380838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine.
    Stinson BM; Nager AR; Glynn SE; Schmitz KR; Baker TA; Sauer RT
    Cell; 2013 Apr; 153(3):628-39. PubMed ID: 23622246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.