These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25195167)

  • 1. Problems and pit-falls in testing for G × E and epistasis in candidate gene studies of human behavior.
    Eaves L; Verhulst B
    Behav Genet; 2014 Nov; 44(6):578-90. PubMed ID: 25195167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of genetic drift on variance components under a general model of epistasis.
    Barton NH; Turelli M
    Evolution; 2004 Oct; 58(10):2111-32. PubMed ID: 15562679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial Methods for Epistasis and Dominance.
    Sverdlov S; Thompson E
    J Comput Biol; 2017 Apr; 24(4):267-279. PubMed ID: 27870559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling epistasis with triple testcross progenies of near-isogenic lines.
    Reif JC; Kusterer B; Piepho HP; Meyer RC; Altmann T; Schön CC; Melchinger AE
    Genetics; 2009 Jan; 181(1):247-57. PubMed ID: 18984574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of SNP epistasis effects of quantitative traits using an extended Kempthorne model.
    Mao Y; London NR; Ma L; Dvorkin D; Da Y
    Physiol Genomics; 2006 Dec; 28(1):46-52. PubMed ID: 16940430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids.
    Shang L; Wang Y; Cai S; Wang X; Li Y; Abduweli A; Hua J
    G3 (Bethesda); 2015 Dec; 6(3):499-507. PubMed ID: 26715091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying quantitative trait locus by genetic background interactions in association studies.
    Jannink JL
    Genetics; 2007 May; 176(1):553-61. PubMed ID: 17179077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling personal genomics with an explicit test of epistasis.
    Greene CS; Himmelstein DS; Nelson HH; Kelsey KT; Williams SM; Andrew AS; Karagas MR; Moore JH
    Pac Symp Biocomput; 2010; ():327-36. PubMed ID: 19908385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epistasis × environment interactions among Arabidopsis thaliana glucosinolate genes impact complex traits and fitness in the field.
    Kerwin RE; Feusier J; Muok A; Lin C; Larson B; Copeland D; Corwin JA; Rubin MJ; Francisco M; Li B; Joseph B; Weinig C; Kliebenstein DJ
    New Phytol; 2017 Aug; 215(3):1249-1263. PubMed ID: 28608555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An association study revealed substantial effects of dominance, epistasis and substance dependence co-morbidity on alcohol dependence symptom count.
    Chen G; Zhang F; Xue W; Wu R; Xu H; Wang K; Zhu J
    Addict Biol; 2017 Nov; 22(6):1475-1485. PubMed ID: 27151647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic measurement of theory of epistatic effects.
    Wagner GP; Laubichler MD; Bagheri-Chaichian H
    Genetica; 1998; 102-103(1-6):569-80. PubMed ID: 9766965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotype × Environment Interaction in Psychiatric Genetics: Deep Truth or Thin Ice?
    Eaves L
    Twin Res Hum Genet; 2017 Jun; 20(3):187-196. PubMed ID: 28535827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture.
    Monir MM; Zhu J
    Sci Rep; 2017 Jan; 7():38600. PubMed ID: 28079101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting epistasis with restricted response patterns in pairs of biallelic loci.
    Wirapati P; Forner K; Delgado-Vega A; Alarcón-Riquelme M; Delorenzi M; Wojcik J
    Ann Hum Genet; 2011 Jan; 75(1):133-45. PubMed ID: 21118193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic genetic architecture of yeast response to environmental perturbation shed light on origin of cryptic genetic variation.
    Zan Y; Carlborg Ö
    PLoS Genet; 2020 May; 16(5):e1008801. PubMed ID: 32392218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epistatic analysis of carcass characteristics in pigs reveals genomic interactions between quantitative trait loci attributable to additive and dominance genetic effects.
    Duthie C; Simm G; Doeschl-Wilson A; Kalm E; Knap PW; Roehe R
    J Anim Sci; 2010 Jul; 88(7):2219-34. PubMed ID: 20228239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting genetic architecture underlying seed traits in multiple environments.
    Qi T; Cao Y; Cao L; Gao Y; Zhu S; Lou X; Xu H
    Genetics; 2015 Jan; 199(1):61-71. PubMed ID: 25335503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical power for detecting epistasis QTL effects under the F-2 design.
    Mao Y; Da Y
    Genet Sel Evol; 2005; 37(2):129-50. PubMed ID: 16194521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian reversible-jump for epistasis analysis in genomic studies.
    Balestre M; de Souza CL
    BMC Genomics; 2016 Dec; 17(1):1012. PubMed ID: 27938339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MeSCoT: the tool for quantitative trait simulation through the mechanistic modeling of genes' regulatory interactions.
    Milkevych V; Karaman E; Sahana G; Janss L; Cai Z; Lund MS
    G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 33905502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.