These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 25195952)
1. The impact of γ radiation on the bioavailability of Fe(III) minerals for microbial respiration. Brown AR; Wincott PL; LaVerne JA; Small JS; Vaughan DJ; Pimblott SM; Lloyd JR Environ Sci Technol; 2014 Sep; 48(18):10672-80. PubMed ID: 25195952 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1. Paul L; Herrmann S; Koch CB; Philips J; Smolders E Water Res; 2013 May; 47(7):2543-54. PubMed ID: 23490101 [TBL] [Abstract][Full Text] [Related]
3. Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens. Etique M; Jorand FP; Ruby C Geobiology; 2016 May; 14(3):237-54. PubMed ID: 26715461 [TBL] [Abstract][Full Text] [Related]
4. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities. Jiang S; Lee JH; Kim D; Kanaly RA; Kim MG; Hur HG Environ Sci Technol; 2013 Aug; 47(15):8616-23. PubMed ID: 23802758 [TBL] [Abstract][Full Text] [Related]
5. The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1. Liu X; Chu G; Du Y; Li J; Si Y World J Microbiol Biotechnol; 2019 Mar; 35(4):64. PubMed ID: 30923928 [TBL] [Abstract][Full Text] [Related]
6. Impact of Fe(II) oxidation in the presence of iron-reducing bacteria on subsequent Fe(III) bio-reduction. Chen R; Liu H; Tong M; Zhao L; Zhang P; Liu D; Yuan S Sci Total Environ; 2018 Oct; 639():1007-1014. PubMed ID: 29929270 [TBL] [Abstract][Full Text] [Related]
7. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products. O'Loughlin EJ; Gorski CA; Scherer MM; Boyanov MI; Kemner KM Environ Sci Technol; 2010 Jun; 44(12):4570-6. PubMed ID: 20476735 [TBL] [Abstract][Full Text] [Related]
8. Shewanella oneidensis MR-1 dissimilatory reduction of ferrihydrite to highly enhance mineral transformation and reactive oxygen species production in redox-fluctuating environments. Yang L; Wu H; Zhao Y; Tan X; Wei Y; Guan Y; Huang G Chemosphere; 2024 Mar; 352():141364. PubMed ID: 38336034 [TBL] [Abstract][Full Text] [Related]
9. Phenotypic Characterisation of Shewanella oneidensis MR-1 Exposed to X-Radiation. Brown AR; Correa E; Xu Y; AlMasoud N; Pimblott SM; Goodacre R; Lloyd JR PLoS One; 2015; 10(6):e0131249. PubMed ID: 26098880 [TBL] [Abstract][Full Text] [Related]
10. Biogenic iron sulfide functioning as electron-mediating interface to accelerate dissimilatory ferrihydrite reduction by Shewanella oneidensis MR-1. Zhu F; Huang Y; Ni H; Tang J; Zhu Q; Long ZE; Zou L Chemosphere; 2022 Feb; 288(Pt 3):132661. PubMed ID: 34699878 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of cysteine on hematite, magnetite and ferrihydrite: FT-IR, Mössbauer, EPR spectroscopy and X-ray diffractometry studies. Vieira AP; Berndt G; de Souza Junior IG; Di Mauro E; Paesano A; de Santana H; da Costa AC; Zaia CT; Zaia DA Amino Acids; 2011 Jan; 40(1):205-14. PubMed ID: 20524137 [TBL] [Abstract][Full Text] [Related]
12. Competing Fe (II)-induced mineralization pathways of ferrihydrite. Hansel CM; Benner SG; Fendorf S Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641 [TBL] [Abstract][Full Text] [Related]
14. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1. Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936 [TBL] [Abstract][Full Text] [Related]
15. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction. Fredrickson JK; Kota S; Kukkadapu RK; Liu C; Zachara JM Biodegradation; 2003 Apr; 14(2):91-103. PubMed ID: 12877465 [TBL] [Abstract][Full Text] [Related]
16. Influence of riboflavin on the reduction of radionuclides by Shewanella oneidenis MR-1. Cherkouk A; Law GT; Rizoulis A; Law K; Renshaw JC; Morris K; Livens FR; Lloyd JR Dalton Trans; 2016 Mar; 45(12):5030-7. PubMed ID: 26632613 [TBL] [Abstract][Full Text] [Related]
17. Hexahydro-1,3,5-trinitro-1,3,5-triazine transformation by biologically reduced ferrihydrite: evolution of Fe mineralogy, surface area, and reaction rates. Williams AG; Gregory KB; Parkin GF; Scherer MM Environ Sci Technol; 2005 Jul; 39(14):5183-9. PubMed ID: 16086451 [TBL] [Abstract][Full Text] [Related]
18. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1. Li C; Yi X; Dang Z; Yu H; Zeng T; Wei C; Feng C Chemosphere; 2016 Feb; 144():2065-72. PubMed ID: 26583288 [TBL] [Abstract][Full Text] [Related]
19. Influencing mechanisms of siderite and magnetite, on naphthalene biodegradation: Insights from degradability and mineral surface structure. Shen X; Dong W; Wan Y; Feng K; Liu Y; Wei Y J Environ Manage; 2021 Dec; 299():113648. PubMed ID: 34479148 [TBL] [Abstract][Full Text] [Related]
20. Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II). Fu L; Li SW; Ding ZW; Ding J; Lu YZ; Zeng RJ Water Res; 2016 Jan; 88():808-815. PubMed ID: 26599434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]