These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25195952)

  • 81. Reduction of Hg(II) to Hg(0) by magnetite.
    Wiatrowski HA; Das S; Kukkadapu R; Ilton ES; Barkay T; Yee N
    Environ Sci Technol; 2009 Jul; 43(14):5307-13. PubMed ID: 19708358
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Enhancement of hematite bioreduction by natural organic matter.
    Royer RA; Burgos WD; Fisher AS; Jeon BH; Unz RF; Dempsey BA
    Environ Sci Technol; 2002 Jul; 36(13):2897-904. PubMed ID: 12144265
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.
    Johnson JE; Savalia P; Davis R; Kocar BD; Webb SM; Nealson KH; Fischer WW
    Environ Sci Technol; 2016 Apr; 50(8):4248-58. PubMed ID: 27018915
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Microbial reduction of U(VI) under alkaline conditions: implications for radioactive waste geodisposal.
    Williamson AJ; Morris K; Law GT; Rizoulis A; Charnock JM; Lloyd JR
    Environ Sci Technol; 2014 Nov; 48(22):13549-56. PubMed ID: 25231875
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.
    Zhengji Y
    J Environ Radioact; 2010 Sep; 101(9):700-5. PubMed ID: 20471727
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1.
    Kim DH; Kim MG; Jiang S; Lee JH; Hur HG
    Environ Sci Technol; 2013 Aug; 47(15):8709-15. PubMed ID: 23802169
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Photoinduced transformation of ferrihydrite in the presence of aqueous sulfite and its influence on the repartitioning of Cd.
    Qiu J; Hou X; Ren Y; Liu C; Meng F; Lee JF; Lin YJ; Huang Z; Ma H; Shi Z; Feng C
    Water Res; 2023 Mar; 231():119607. PubMed ID: 36680820
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite.
    Xiao W; Jones AM; Collins RN; Waite TD
    Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1760-1769. PubMed ID: 29751097
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles.
    Maithreepala RA; Doong RA
    J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Iron and Carbon Dynamics during Aging and Reductive Transformation of Biogenic Ferrihydrite.
    Cismasu AC; Williams KH; Nico PS
    Environ Sci Technol; 2016 Jan; 50(1):25-35. PubMed ID: 26605981
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Effects of biochar/AQDS on As(III)-adsorbed ferrihydrite reduction and arsenic (As) and iron (Fe) transformation: Abiotic and biological conditions.
    An W; Wu C; Xue S; Liu Z; Liu M; Li W
    Chemosphere; 2022 Mar; 291(Pt 3):133126. PubMed ID: 34861266
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.
    ThomasArrigo LK; Mikutta C; Byrne J; Kappler A; Kretzschmar R
    Environ Sci Technol; 2017 Jun; 51(12):6897-6907. PubMed ID: 28590131
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.
    Bassez MP
    Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes
    Dong Y; Sanford RA; Boyanov MI; Flynn TM; O'Loughlin EJ; Kemner KM; George S; Fouke KE; Li S; Huang D; Li S; Fouke BW
    Environ Sci Technol; 2020 Aug; 54(16):10128-10140. PubMed ID: 32693580
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Characterisation of the dissimilatory reduction of Fe(III)-oxyhydroxide at the microbe-mineral interface: the application of STXM-XMCD.
    Coker VS; Byrne JM; Telling ND; VAN DER Laan G; Lloyd JR; Hitchcock AP; Wang J; Pattrick RA
    Geobiology; 2012 Jul; 10(4):347-54. PubMed ID: 22515480
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Iron Isotope Fractionations Reveal a Finite Bioavailable Fe Pool for Structural Fe(III) Reduction in Nontronite.
    Shi B; Liu K; Wu L; Li W; Smeaton CM; Beard BL; Johnson CM; Roden EE; Van Cappellen P
    Environ Sci Technol; 2016 Aug; 50(16):8661-9. PubMed ID: 27291525
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The role of biomineralization in microbiologically influenced corrosion.
    Little B; Wagner P; Hart K; Ray R; Lavoie D; Nealson K; Aguilar C
    Biodegradation; 1998; 9(1):1-10. PubMed ID: 9807800
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Competitive reduction of pertechnetate (99TcO4-) by dissimilatory metal reducing bacteria and biogenic Fe(II).
    Plymale AE; Fredrickson JK; Zachara JM; Dohnalkova AC; Heald SM; Moore DA; Kennedy DW; Marshall MJ; Wang C; Resch CT; Nachimuthu P
    Environ Sci Technol; 2011 Feb; 45(3):951-7. PubMed ID: 21210705
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases.
    Gescher JS; Cordova CD; Spormann AM
    Mol Microbiol; 2008 May; 68(3):706-19. PubMed ID: 18394146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.