These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25195975)

  • 1. Low-frequency (1/f) noise in nanocrystal field-effect transistors.
    Lai Y; Li H; Kim DK; Diroll BT; Murray CB; Kagan CR
    ACS Nano; 2014 Sep; 8(9):9664-72. PubMed ID: 25195975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility-dependent low-frequency noise in graphene field-effect transistors.
    Zhang Y; Mendez EE; Du X
    ACS Nano; 2011 Oct; 5(10):8124-30. PubMed ID: 21913642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing surface states in PbS nanocrystal films using pentacene field effect transistors: controlling carrier concentration and charge transport in pentacene.
    Park B; Whitham K; Bian K; Lim YF; Hanrath T
    Phys Chem Chem Phys; 2014 Dec; 16(47):25729-33. PubMed ID: 25017003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of self-assembled monolayer passivation in electrical transport properties and flicker noise of nanowire transistors.
    Kim S; Carpenter PD; Jean RK; Chen H; Zhou C; Ju S; Janes DB
    ACS Nano; 2012 Aug; 6(8):7352-61. PubMed ID: 22775468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.
    Kim DK; Lai Y; Diroll BT; Murray CB; Kagan CR
    Nat Commun; 2012; 3():1216. PubMed ID: 23169057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation.
    Na J; Joo MK; Shin M; Huh J; Kim JS; Piao M; Jin JE; Jang HK; Choi HJ; Shim JH; Kim GT
    Nanoscale; 2014 Jan; 6(1):433-41. PubMed ID: 24212201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency electronic noise in single-layer MoS2 transistors.
    Sangwan VK; Arnold HN; Jariwala D; Marks TJ; Lauhon LJ; Hersam MC
    Nano Lett; 2013 Sep; 13(9):4351-5. PubMed ID: 23944940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint mapping of mobility and trap density in colloidal quantum dot solids.
    Stadler P; Sutherland BR; Ren Y; Ning Z; Simchi A; Thon SM; Hoogland S; Sargent EH
    ACS Nano; 2013 Jul; 7(7):5757-62. PubMed ID: 23786265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids.
    Fafarman AT; Koh WK; Diroll BT; Kim DK; Ko DK; Oh SJ; Ye X; Doan-Nguyen V; Crump MR; Reifsnyder DC; Murray CB; Kagan CR
    J Am Chem Soc; 2011 Oct; 133(39):15753-61. PubMed ID: 21848336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air-Stable CuInSe
    Wang H; Butler DJ; Straus DB; Oh N; Wu F; Guo J; Xue K; Lee JD; Murray CB; Kagan CR
    ACS Nano; 2019 Feb; 13(2):2324-2333. PubMed ID: 30707549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the colloidal nanocrystal library to construct electronic devices.
    Choi JH; Wang H; Oh SJ; Paik T; Sung P; Sung J; Ye X; Zhao T; Diroll BT; Murray CB; Kagan CR
    Science; 2016 Apr; 352(6282):205-8. PubMed ID: 27124455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased carrier mobility and lifetime in CdSe quantum dot thin films through surface trap passivation and doping.
    Straus DB; Goodwin ED; Gaulding EA; Muramoto S; Murray CB; Kagan CR
    J Phys Chem Lett; 2015 Nov; 6(22):4605-9. PubMed ID: 26536065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering charge injection and charge transport for high performance PbSe nanocrystal thin film devices and circuits.
    Oh SJ; Wang Z; Berry NE; Choi JH; Zhao T; Gaulding EA; Paik T; Lai Y; Murray CB; Kagan CR
    Nano Lett; 2014 Nov; 14(11):6210-6. PubMed ID: 25298154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable range hopping conduction in ZnO nanocrystal thin films.
    Benton BT; Greenberg BL; Aydil E; Kortshagen UR; Campbell SA
    Nanotechnology; 2018 Oct; 29(41):415202. PubMed ID: 30059013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency electrical fluctuations in metal-nanowire-metal phototransistors.
    Lu MP; Lu MY; Wang YJ
    Nanotechnology; 2014 Jul; 25(28):285202. PubMed ID: 24971527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge Blinking Statistics of Semiconductor Nanocrystals Revealed by Carbon Nanotube Single Charge Sensors.
    Zbydniewska E; Duzynska A; Popoff M; Hourlier D; Lenfant S; Judek J; Zdrojek M; Mélin T
    Nano Lett; 2015 Oct; 15(10):6349-56. PubMed ID: 26418364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of Low-Frequency Electronic Noise in Polymer Nanowire Field-Effect Transistors.
    Lezzi F; Ferrari G; Pennetta C; Pisignano D
    Nano Lett; 2015 Nov; 15(11):7245-52. PubMed ID: 26479330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra- and inter-nanocrystal charge transport in nanocrystal films.
    Aigner W; Bienek O; Falcão BP; Ahmed SU; Wiggers H; Stutzmann M; Pereira RN
    Nanoscale; 2018 May; 10(17):8042-8057. PubMed ID: 29670986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge noise in graphene transistors.
    Heller I; Chatoor S; Männik J; Zevenbergen MA; Oostinga JB; Morpurgo AF; Dekker C; Lemay SG
    Nano Lett; 2010 May; 10(5):1563-7. PubMed ID: 20373788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-mobility transparent thin-film transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature.
    Sun J; Lu A; Wang L; Hu Y; Wan Q
    Nanotechnology; 2009 Aug; 20(33):335204. PubMed ID: 19636097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.