BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 25196090)

  • 1. Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement.
    Singh J; Pandey P; James D; Chandrasekhar K; Achary VM; Kaul T; Tripathy BC; Reddy MK
    Plant Biotechnol J; 2014 Dec; 12(9):1217-30. PubMed ID: 25196090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for manipulating Rubisco and creating photorespiratory bypass to boost C
    Jin K; Chen G; Yang Y; Zhang Z; Lu T
    Plant Cell Environ; 2023 Feb; 46(2):363-378. PubMed ID: 36444099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing metabolic potential: C-fixation.
    Andralojc PJ; Carmo-Silva E; Degen GE; Parry MAJ
    Essays Biochem; 2018 Apr; 62(1):109-118. PubMed ID: 29653967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity.
    Iñiguez C; Aguiló-Nicolau P; Galmés J
    Biochem Soc Trans; 2021 Nov; 49(5):2007-2019. PubMed ID: 34623388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.
    Kromdijk J; Long SP
    Proc Biol Sci; 2016 Mar; 283(1826):20152578. PubMed ID: 26962136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modelling predicts substantial carbon assimilation gains for C3 plants with a single-celled C4 biochemical pump.
    Jurić I; Hibberd JM; Blatt M; Burroughs NJ
    PLoS Comput Biol; 2019 Sep; 15(9):e1007373. PubMed ID: 31568503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing photorespiration for improved crop productivity.
    South PF; Cavanagh AP; Lopez-Calcagno PE; Raines CA; Ort DR
    J Integr Plant Biol; 2018 Dec; 60(12):1217-1230. PubMed ID: 30126060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for engineering C(4) photosynthesis.
    Leegood RC
    J Plant Physiol; 2013 Mar; 170(4):378-88. PubMed ID: 23245935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.
    Sharwood RE; Ghannoum O; Whitney SM
    Curr Opin Plant Biol; 2016 Jun; 31():135-42. PubMed ID: 27131319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Costs of Photorespiration to Food Production Now and in the Future.
    Walker BJ; VanLoocke A; Bernacchi CJ; Ort DR
    Annu Rev Plant Biol; 2016 Apr; 67():107-29. PubMed ID: 26865340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C
    Sharwood RE; Ghannoum O; Kapralov MV; Gunn LH; Whitney SM
    Nat Plants; 2016 Nov; 2():16186. PubMed ID: 27892943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current and possible approaches for improving photosynthetic efficiency.
    Éva C; Oszvald M; Tamás L
    Plant Sci; 2019 Mar; 280():433-440. PubMed ID: 30824023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Chlamydomonas CO
    Mackinder LCM
    New Phytol; 2018 Jan; 217(1):54-61. PubMed ID: 28833179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle.
    Raines CA
    Plant Cell Environ; 2006 Mar; 29(3):331-9. PubMed ID: 17080589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering carbon fixation with artificial protein organelles.
    Giessen TW; Silver PA
    Curr Opin Biotechnol; 2017 Aug; 46():42-50. PubMed ID: 28126670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving plant heat tolerance through modification of Rubisco activase in C3 plants to secure crop yield and food security in a future warming world.
    Qu Y; Mueller-Cajar O; Yamori W
    J Exp Bot; 2023 Jan; 74(2):591-599. PubMed ID: 35981868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops.
    Sharwood RE
    New Phytol; 2017 Jan; 213(2):494-510. PubMed ID: 27935049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis.
    Prins A; Orr DJ; Andralojc PJ; Reynolds MP; Carmo-Silva E; Parry MA
    J Exp Bot; 2016 Mar; 67(6):1827-38. PubMed ID: 26798025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using synthetic biology to improve photosynthesis for sustainable food production.
    da Fonseca-Pereira P; Siqueira JA; Monteiro-Batista RC; Vaz MGMV; Nunes-Nesi A; Araújo WL
    J Biotechnol; 2022 Nov; 359():1-14. PubMed ID: 36126804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.