BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2519625)

  • 1. Dose delivered by secondary electrons radiated by metallic objects implanted in human tissue during radiation therapy using high energy photons.
    Rao KS
    Acta Med Pol; 1989; 30(3-4):147-67. PubMed ID: 2519625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backscattered dose perturbation effects at metallic interfaces irradiated by high-energy X- and gamma-ray therapeutic beams.
    Ravikumar M; Ravichandran R; Sathiyan S; Supe SS
    Strahlenther Onkol; 2004 Mar; 180(3):173-8. PubMed ID: 14991206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Should positive phase III clinical trial data be required before proton beam therapy is more widely adopted? No.
    Suit H; Kooy H; Trofimov A; Farr J; Munzenrider J; DeLaney T; Loeffler J; Clasie B; Safai S; Paganetti H
    Radiother Oncol; 2008 Feb; 86(2):148-53. PubMed ID: 18237800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the EDR-2 film for relative dosimetry of high-energy photon and electron beams.
    Ahmad M; Chen Z; Song H; Deng J; Nath R
    Radiat Prot Dosimetry; 2006; 120(1-4):159-62. PubMed ID: 16644932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetry around metallic ports in tissue expanders in patients receiving postmastectomy radiation therapy: an ex vivo evaluation.
    Moni J; Graves-Ditman M; Cederna P; Griffith K; Krueger EA; Fraass BA; Pierce LJ
    Med Dosim; 2004; 29(1):49-54. PubMed ID: 15023393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo verification of electron beam energy by patient exit dose and optical density of portal films.
    Geyer P; Baus WW; Baumann M
    Strahlenther Onkol; 2004 Jan; 180(1):62-5. PubMed ID: 14704847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of a metal implant on the depth-dose curve for 6-20 MeV electron radiation].
    Eichhorn M; Gerlach R
    Strahlenther Onkol; 1988 Mar; 164(3):141-7. PubMed ID: 3127907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contamination of high-energy photon beams by scattered photons.
    Nilsson B; Brahme A
    Strahlentherapie; 1981 Mar; 157(3):181-6. PubMed ID: 6782713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Radiation load on the skin using a silicone-coated polyamide wound dressing during photon and electron radiotherapy].
    Thilmann C; Adamietz IA; Ramm U; Mose S; Saran F; Böttcher HD
    Strahlenther Onkol; 1996 May; 172(5):270-4. PubMed ID: 8633260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy responses of the LiF series TL pellets to high-energy photons in the energy range from 1.25 to 21 MV.
    Kim JL; Lee JI; Ji YH; Kim BH; Kim JS; Chang SY
    Radiat Prot Dosimetry; 2006; 119(1-4):353-6. PubMed ID: 16644960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are all photon radiations similar in large absorbers?--a comparison of electron spectra.
    Kellerer AM; Roos H
    Radiat Prot Dosimetry; 2005; 113(3):245-50. PubMed ID: 15695239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorbed dose from contaminant electrons inside and outside megavoltage photon beams.
    Raffaele L; Ielo I; Settineri N; Tosi G; Brambilla MG; Cattani F
    Radiol Med; 1993 Oct; 86(4):513-20. PubMed ID: 8248591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do metallic ports in tissue expanders affect postmastectomy radiation delivery?
    Damast S; Beal K; Ballangrud A; Losasso TJ; Cordeiro PG; Disa JJ; Hong L; McCormick BL
    Int J Radiat Oncol Biol Phys; 2006 Sep; 66(1):305-10. PubMed ID: 16904530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matching the dosimetry characteristics of a dual-field Stanford technique to a customized single-field Stanford technique for total skin electron therapy.
    Chen Z; Agostinelli AG; Wilson LD; Nath R
    Int J Radiat Oncol Biol Phys; 2004 Jul; 59(3):872-85. PubMed ID: 15183491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of field modifier blocks on the fast photoneutron dose equivalent from two high-energy medical linear accelerators.
    Hashemi SM; Hashemi-Malayeri B; Raisali G; Shokrani P; Sharafi AA; Jafarizadeh M
    Radiat Prot Dosimetry; 2008; 128(3):359-62. PubMed ID: 17875628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiobiological effectiveness (RBE) of megavoltage X-ray and electron beams in radiotherapy.
    Amols HI; Lagueux B; Cagna D
    Radiat Res; 1986 Jan; 105(1):58-67. PubMed ID: 3080801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Consideration of inhomogeneities in irradiation planning. 3. Influence of inhomogeneities on the shape of the depth dose curve in water with electronic radiation of different energies (author's transl)].
    Zwicker H; Felix R
    Strahlentherapie; 1977 Feb; 153(2):86-94. PubMed ID: 402714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator.
    Tsechanski A; Krutman Y; Faermann S
    Phys Med Biol; 2005 Dec; 50(23):5629-39. PubMed ID: 16306657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies.
    Wei J; Sandison GA; Hsi WC; Ringor M; Lu X
    Phys Med Biol; 2006 Oct; 51(20):5183-97. PubMed ID: 17019032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Portal verification of high-energy electron beams using their photon contamination by film-cassette systems.
    Geyer P; Baus WW; Baumann M
    Strahlenther Onkol; 2006 Jan; 182(1):37-44. PubMed ID: 16404519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.