These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 25196390)
1. Mechanism by which untwisting of retinal leads to productive bacteriorhodopsin photocycle states. Wolter T; Elstner M; Fischer S; Smith JC; Bondar AN J Phys Chem B; 2015 Feb; 119(6):2229-40. PubMed ID: 25196390 [TBL] [Abstract][Full Text] [Related]
2. Excitation energies of a water-bridged twisted retinal structure in the bacteriorhodopsin proton pump: a theoretical investigation. Wolter T; Welke K; Phatak P; Bondar AN; Elstner M Phys Chem Chem Phys; 2013 Aug; 15(30):12582-90. PubMed ID: 23779103 [TBL] [Abstract][Full Text] [Related]
3. Catalysis of Ground State cis[Formula: see text] trans Isomerization of Bacteriorhodopsin's Retinal Chromophore by a Hydrogen-Bond Network. Elghobashi-Meinhardt N; Phatak P; Bondar AN; Elstner M; Smith JC J Membr Biol; 2018 Jun; 251(3):315-327. PubMed ID: 29516110 [TBL] [Abstract][Full Text] [Related]
4. Tuning of retinal twisting in bacteriorhodopsin controls the directionality of the early photocycle steps. Bondar AN; Fischer S; Suhai S; Smith JC J Phys Chem B; 2005 Aug; 109(31):14786-8. PubMed ID: 16852870 [TBL] [Abstract][Full Text] [Related]
5. Key role of electrostatic interactions in bacteriorhodopsin proton transfer. Bondar AN; Fischer S; Smith JC; Elstner M; Suhai S J Am Chem Soc; 2004 Nov; 126(44):14668-77. PubMed ID: 15521787 [TBL] [Abstract][Full Text] [Related]
6. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin. Magyari K; Bálint Z; Simon V; Váró G J Photochem Photobiol B; 2006 Nov; 85(2):140-4. PubMed ID: 16904334 [TBL] [Abstract][Full Text] [Related]
7. Water pathways in the bacteriorhodopsin proton pump. Bondar AN; Fischer S; Smith JC J Membr Biol; 2011 Jan; 239(1-2):73-84. PubMed ID: 21113780 [TBL] [Abstract][Full Text] [Related]
8. Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions. Bondar AN; Baudry J; Suhai S; Fischer S; Smith JC J Phys Chem B; 2008 Nov; 112(47):14729-41. PubMed ID: 18973373 [TBL] [Abstract][Full Text] [Related]
9. Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. Schobert B; Cupp-Vickery J; Hornak V; Smith S; Lanyi J J Mol Biol; 2002 Aug; 321(4):715-26. PubMed ID: 12206785 [TBL] [Abstract][Full Text] [Related]
10. Simulation analysis of the retinal conformational equilibrium in dark-adapted bacteriorhodopsin. Baudry J; Crouzy S; Roux B; Smith JC Biophys J; 1999 Apr; 76(4):1909-17. PubMed ID: 10096888 [TBL] [Abstract][Full Text] [Related]
11. Is the photoinduced isomerization in retinal protonated Schiff bases a single- or double-torsional process? Szymczak JJ; Barbatti M; Lischka H J Phys Chem A; 2009 Oct; 113(43):11907-18. PubMed ID: 19653674 [TBL] [Abstract][Full Text] [Related]
12. Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin. Gai F; Hasson KC; McDonald JC; Anfinrud PA Science; 1998 Mar; 279(5358):1886-91. PubMed ID: 9506931 [TBL] [Abstract][Full Text] [Related]
13. Quantum dynamics of the femtosecond photoisomerization of retinal in bacteriorhodopsin. Ben-Nun M; Molnar F; Lu H; Phillips JC; Martínez TJ; Schulten K Faraday Discuss; 1998; (110):447-62; discussion 477-520. PubMed ID: 10822594 [TBL] [Abstract][Full Text] [Related]
14. Reducing the flexibility of retinal restores a wild-type-like photocycle in bacteriorhodopsin mutants defective in protein-retinal coupling. Delaney JK; Yahalom G; Sheves M; Subramaniam S Proc Natl Acad Sci U S A; 1997 May; 94(10):5028-33. PubMed ID: 9144184 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin. Tajkhorshid E; Baudry J; Schulten K; Suhai S Biophys J; 2000 Feb; 78(2):683-93. PubMed ID: 10653781 [TBL] [Abstract][Full Text] [Related]
17. Relationship of retinal configuration and internal proton transfer at the end of the bacteriorhodopsin photocycle. Richter HT; Needleman R; Kandori H; Maeda A; Lanyi JK Biochemistry; 1996 Dec; 35(48):15461-6. PubMed ID: 8952499 [TBL] [Abstract][Full Text] [Related]
18. The structures of bacteriorhodopsin with different retinal-Schiff base orientations--computer modeling and energy minimization studies. Sankararamakrishnan R; Vishveshwara S J Biomol Struct Dyn; 1992 Jun; 9(6):1073-95. PubMed ID: 1637503 [TBL] [Abstract][Full Text] [Related]
19. Long-distance proton transfer with a break in the bacteriorhodopsin active site. Phatak P; Frähmcke JS; Wanko M; Hoffmann M; Strodel P; Smith JC; Suhai S; Bondar AN; Elstner M J Am Chem Soc; 2009 May; 131(20):7064-78. PubMed ID: 19405533 [TBL] [Abstract][Full Text] [Related]
20. Structural and energetic determinants of primary proton transfer in bacteriorhodopsin. Bondar AN; Smith JC; Fischer S Photochem Photobiol Sci; 2006 Jun; 5(6):547-52. PubMed ID: 16761083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]