These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
521 related articles for article (PubMed ID: 25196630)
1. Methionine deficiency does not increase polyamine turnover through depletion of hepatic S-adenosylmethionine in juvenile Atlantic salmon. Espe M; Andersen SM; Holen E; Rønnestad I; Veiseth-Kent E; Zerrahn JE; Aksnes A Br J Nutr; 2014 Oct; 112(8):1274-85. PubMed ID: 25196630 [TBL] [Abstract][Full Text] [Related]
2. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar). Andersen SM; Holen E; Aksnes A; Rønnestad I; Zerrahn JE; Espe M Br J Nutr; 2013 Dec; 110(11):1968-77. PubMed ID: 23656796 [TBL] [Abstract][Full Text] [Related]
3. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.). Kortner TM; Björkhem I; Krasnov A; Timmerhaus G; Krogdahl Å Br J Nutr; 2014 Jun; 111(12):2089-103. PubMed ID: 24635969 [TBL] [Abstract][Full Text] [Related]
4. Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.). Gu M; Kortner TM; Penn M; Hansen AK; Krogdahl Å Br J Nutr; 2014 Feb; 111(3):432-44. PubMed ID: 24507758 [TBL] [Abstract][Full Text] [Related]
5. Dietary methionine availability affects the main factors involved in muscle protein turnover in rainbow trout (Oncorhynchus mykiss). Belghit I; Skiba-Cassy S; Geurden I; Dias K; Surget A; Kaushik S; Panserat S; Seiliez I Br J Nutr; 2014 Aug; 112(4):493-503. PubMed ID: 24877663 [TBL] [Abstract][Full Text] [Related]
6. A co culture approach show that polyamine turnover is affected during inflammation in Atlantic salmon immune and liver cells and that arginine and LPS exerts opposite effects on p38MAPK signaling. Holen E; Espe M; Andersen SM; Taylor R; Aksnes A; Mengesha Z; Araujo P Fish Shellfish Immunol; 2014 Apr; 37(2):286-98. PubMed ID: 24565893 [TBL] [Abstract][Full Text] [Related]
7. High levels of dietary phytosterols affect lipid metabolism and increase liver and plasma TAG in Atlantic salmon (Salmo salar L.). Liland NS; Espe M; Rosenlund G; Waagbø R; Hjelle JI; Lie Ø; Fontanillas R; Torstensen BE Br J Nutr; 2013 Dec; 110(11):1958-67. PubMed ID: 23631850 [TBL] [Abstract][Full Text] [Related]
8. Feedback regulation of polyamine synthesis in Ehrlich ascites tumor cells. Analysis using nonmetabolizable derivatives of putrescine and spermine. Holm I; Persson L; Heby O; Seiler N Biochim Biophys Acta; 1988 Dec; 972(3):239-48. PubMed ID: 3196761 [TBL] [Abstract][Full Text] [Related]
9. Changes in polyamine synthesis and concentrations during chick embryo development. Löwkvist B; Emanuelsson H; Heby O J Exp Zool; 1985 Jun; 234(3):375-82. PubMed ID: 4056678 [TBL] [Abstract][Full Text] [Related]
11. The effect of micronutrient supplementation on growth and hepatic metabolism in diploid and triploid Atlantic salmon (Salmo salar) parr fed a low marine ingredient diet. Taylor JF; Vera LM; De Santis C; Lock EJ; Espe M; Skjærven KH; Leeming D; Del Pozo J; Mota-Velasco J; Migaud H; Hamre K; Tocher DR Comp Biochem Physiol B Biochem Mol Biol; 2019 Jan; 227():106-121. PubMed ID: 30367964 [TBL] [Abstract][Full Text] [Related]
12. The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine. Pegg AE Biochem J; 1984 Nov; 224(1):29-38. PubMed ID: 6439194 [TBL] [Abstract][Full Text] [Related]
13. Arginine supplementation and exposure time affects polyamine and glucose metabolism in primary liver cells isolated from Atlantic salmon. Andersen SM; Taylor R; Holen E; Aksnes A; Espe M Amino Acids; 2014 May; 46(5):1225-33. PubMed ID: 24500114 [TBL] [Abstract][Full Text] [Related]
14. Development changes of polyamine biosynthesis in rat liver. Eguchi K; Yonezawa M; Ohmoto H; Mitsui Y; Hiramatsu Y Biol Neonate; 1992; 62(6):402-8. PubMed ID: 1472582 [TBL] [Abstract][Full Text] [Related]
15. The involvement of polyamines in the proliferation of cultured retinal pigment epithelial cells. Yanagihara N; Moriwaki M; Shiraki K; Miki T; Otani S Invest Ophthalmol Vis Sci; 1996 Sep; 37(10):1975-83. PubMed ID: 8814137 [TBL] [Abstract][Full Text] [Related]
16. Extracellular Spermine Activates DNA Methyltransferase 3A and 3B. Fukui T; Soda K; Takao K; Rikiyama T Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30871110 [TBL] [Abstract][Full Text] [Related]
17. Concurrent overexpression of ornithine decarboxylase and spermidine/spermine N(1)-acetyltransferase further accelerates the catabolism of hepatic polyamines in transgenic mice. Suppola S; Heikkinen S; Parkkinen JJ; Uusi-Oukari M; Korhonen VP; Keinänen T; Alhonen L; Jänne J Biochem J; 2001 Sep; 358(Pt 2):343-8. PubMed ID: 11513732 [TBL] [Abstract][Full Text] [Related]
18. Methionine limitation results in increased hepatic FAS activity, higher liver 18:1 to 18:0 fatty acid ratio and hepatic TAG accumulation in Atlantic salmon, Salmo salar. Espe M; Rathore RM; Du ZY; Liaset B; El-Mowafi A Amino Acids; 2010 Jul; 39(2):449-60. PubMed ID: 20112035 [TBL] [Abstract][Full Text] [Related]
19. Independent regulation of ornithine decarboxylase and S-adenosylmethionine decarboxylase in methylthioadenosine phosphorylase-deficient malignant murine lymphoblasts. Kubota M; Kajander EO; Carson DA Cancer Res; 1985 Aug; 45(8):3567-72. PubMed ID: 3926303 [TBL] [Abstract][Full Text] [Related]
20. Effects of transient expression of spermidine/spermine N1-acetyltransferase in COS cells. Vargiu C; Persson L FEBS Lett; 1994 Nov; 355(2):163-5. PubMed ID: 7982492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]