These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25196829)

  • 21. Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases.
    Friede T; Röver C; Wandel S; Neuenschwander B
    Biom J; 2017 Jul; 59(4):658-671. PubMed ID: 27754556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation.
    Partlett C; Riley RD
    Stat Med; 2017 Jan; 36(2):301-317. PubMed ID: 27714841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of confidence interval methods for an intra-class correlation coefficient (ICC).
    Ionan AC; Polley MY; McShane LM; Dobbin KK
    BMC Med Res Methodol; 2014 Nov; 14():121. PubMed ID: 25417040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Exact Bayesian Model for Meta-Analysis of the Standardized Mean Difference with Its Simultaneous Credible Intervals.
    Lu Y; Zheng Q; Henning K
    Multivariate Behav Res; 2024; 59(5):1058-1076. PubMed ID: 39042102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS.
    Lambert PC; Sutton AJ; Burton PR; Abrams KR; Jones DR
    Stat Med; 2005 Aug; 24(15):2401-28. PubMed ID: 16015676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Covariance in Randomized Experiments with Heterogeneity of Regression and a Random Covariate: The Variance of the Estimated Treatment Effect at Selected Covariate Values.
    Li L; McLouth CJ; Delaney HD
    Multivariate Behav Res; 2020; 55(6):926-940. PubMed ID: 31795755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simplification and implementation of random-effects meta-analyses based on the exact distribution of Cochran's Q.
    Preuß M; Ziegler A
    Methods Inf Med; 2014; 53(1):54-61. PubMed ID: 24317521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
    Niedhammer I; Milner A; Witt K; Klingelschmidt J; Khireddine-Medouni I; Alexopoulos EC; Toivanen S; Chastang JF; LaMontagne AD
    Scand J Work Environ Health; 2018 Jan; 44(1):108-110. PubMed ID: 29218357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hierarchical model for body height estimation in images.
    van den Hout A; Alberink I
    Forensic Sci Int; 2010 Apr; 197(1-3):48-53. PubMed ID: 20080368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction models for clustered data with informative priors for the random effects: a simulation study.
    Ni H; Groenwold RHH; Nielen M; Klugkist I
    BMC Med Res Methodol; 2018 Aug; 18(1):83. PubMed ID: 30081875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Avoiding zero between-study variance estimates in random-effects meta-analysis.
    Chung Y; Rabe-Hesketh S; Choi IH
    Stat Med; 2013 Oct; 32(23):4071-89. PubMed ID: 23670939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The exact distribution of Cochran's heterogeneity statistic in one-way random effects meta-analysis.
    Biggerstaff BJ; Jackson D
    Stat Med; 2008 Dec; 27(29):6093-110. PubMed ID: 18781561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study specific prediction intervals for random-effects meta-analysis: A tutorial: Prediction intervals in meta-analysis.
    van Aert RCM; Schmid CH; Svensson D; Jackson D
    Res Synth Methods; 2021 Jul; 12(4):429-447. PubMed ID: 33939307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple Approach to Calculate Random Effects Model Tolerance Intervals to Set Release and Shelf-Life Specification Limits of Pharmaceutical Products.
    Montes RO; Burdick RK; Leblond DJ
    PDA J Pharm Sci Technol; 2019; 73(1):39-59. PubMed ID: 30361286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis.
    Veroniki AA; Jackson D; Bender R; Kuss O; Langan D; Higgins JPT; Knapp G; Salanti G
    Res Synth Methods; 2019 Mar; 10(1):23-43. PubMed ID: 30129707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of homogeneity vs. heterogeneity of residual variance in random regression test-day models in a Bayesian analysis.
    López-Romero P; Rekaya R; Carabaño MJ
    J Dairy Sci; 2003 Oct; 86(10):3374-85. PubMed ID: 14594258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fixed- and Random-Effects Models.
    Kanters S
    Methods Mol Biol; 2022; 2345():41-65. PubMed ID: 34550583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating the relative excess risk due to interaction: a bayesian approach.
    Chu H; Nie L; Cole SR
    Epidemiology; 2011 Mar; 22(2):242-8. PubMed ID: 21228700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust meta-analytic conclusions mandate the provision of prediction intervals in meta-analysis summaries.
    Graham PL; Moran JL
    J Clin Epidemiol; 2012 May; 65(5):503-10. PubMed ID: 22265586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved tests for a random effects meta-regression with a single covariate.
    Knapp G; Hartung J
    Stat Med; 2003 Sep; 22(17):2693-710. PubMed ID: 12939780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.