These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25196994)

  • 1. Organic dicarboxylate negative electrode materials with remarkably small strain for high-voltage bipolar batteries.
    Ogihara N; Yasuda T; Kishida Y; Ohsuna T; Miyamoto K; Ohba N
    Angew Chem Int Ed Engl; 2014 Oct; 53(43):11467-72. PubMed ID: 25196994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reformation of organic dicarboxylate electrode materials for rechargeable batteries by molecular self-assembly.
    Yasuda T; Ogihara N
    Chem Commun (Camb); 2014 Oct; 50(78):11565-7. PubMed ID: 25140356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On/off switchable electronic conduction in intercalated metal-organic frameworks.
    Ogihara N; Ohba N; Kishida Y
    Sci Adv; 2017 Aug; 3(8):e1603103. PubMed ID: 28868356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and approaches for high-voltage spinel lithium-ion batteries.
    Kim JH; Pieczonka NP; Yang L
    Chemphyschem; 2014 Jul; 15(10):1940-54. PubMed ID: 24862008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance.
    Maiti S; Pramanik A; Manju U; Mahanty S
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16357-63. PubMed ID: 26158782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium Naphthalene-2,6-dicarboxylate: An Anode for Sodium Batteries.
    Cabañero JM; Pimenta V; Cannon KC; Morris RE; Armstrong AR
    ChemSusChem; 2019 Oct; 12(19):4522-4528. PubMed ID: 31403248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance improvement of Li-rich layer-structured Li(1.2)Mn(0.54)Ni(0.13)Co(0.13)O2 by integration with spinel LiNi(0.5)Mn(1.5)O4.
    Feng X; Yang Z; Tang D; Kong Q; Gu L; Wang Z; Chen L
    Phys Chem Chem Phys; 2015 Jan; 17(2):1257-64. PubMed ID: 25420544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Li-ion diffusion in the equilibrium nanomorphology of spinel Li(4+x)Ti(5)O(12).
    Wagemaker M; van Eck ER; Kentgens AP; Mulder FM
    J Phys Chem B; 2009 Jan; 113(1):224-30. PubMed ID: 19118486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh energy density Li-ion batteries based on cathodes of 1D metals with -Li-N-B-N- repeating units in α-Li(x)BN₂ (1 ⩽ x ⩽ 3).
    Németh K
    J Chem Phys; 2014 Aug; 141(5):054711. PubMed ID: 25106604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sol-gel synthesis of aliovalent vanadium-doped LiNi(0.5)Mn(1.5)O(4) cathodes with excellent performance at high temperatures.
    Kim MC; Nam KW; Hu E; Yang XQ; Kim H; Kang K; Aravindan V; Kim WS; Lee YS
    ChemSusChem; 2014 Mar; 7(3):829-34. PubMed ID: 24399460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous intercalated metal-organic framework active materials for fast-charging non-aqueous Li-ion capacitors.
    Ogihara N; Hasegawa M; Kumagai H; Mikita R; Nagasako N
    Nat Commun; 2023 Mar; 14(1):1472. PubMed ID: 36928582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries.
    Gu M; Belharouak I; Zheng J; Wu H; Xiao J; Genc A; Amine K; Thevuthasan S; Baer DR; Zhang JG; Browning ND; Liu J; Wang C
    ACS Nano; 2013 Jan; 7(1):760-7. PubMed ID: 23237664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reversible copper extrusion-insertion electrode for rechargeable Li batteries.
    Morcrette M; Rozier P; Dupont L; Mugnier E; Sannier L; Galy J; Tarascon JM
    Nat Mater; 2003 Nov; 2(11):755-61. PubMed ID: 14578878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.
    Zheng J; Xiao J; Yu X; Kovarik L; Gu M; Omenya F; Chen X; Yang XQ; Liu J; Graff GL; Whittingham MS; Zhang JG
    Phys Chem Chem Phys; 2012 Oct; 14(39):13515-21. PubMed ID: 22968196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries.
    Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.
    Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD
    Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates: LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-ion batteries.
    Subban CV; Ati M; Rousse G; Abakumov AM; Van Tendeloo G; Janot R; Tarascon JM
    J Am Chem Soc; 2013 Mar; 135(9):3653-61. PubMed ID: 23373730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.