These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25197651)

  • 1. A blood pressure monitoring method for stroke management.
    Ma HT
    Biomed Res Int; 2014; 2014():571623. PubMed ID: 25197651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation.
    Lee J; Sohn J; Park J; Yang S; Lee S; Kim HC
    Biomed Eng Online; 2018 Jun; 17(1):81. PubMed ID: 29914491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmented blood pressure measurement through the noninvasive estimation of physiological arterial pressure variability.
    Soueidan K; Chen S; Dajani HR; Bolic M; Groza V
    Physiol Meas; 2012 Jun; 33(6):881-99. PubMed ID: 22551623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the challenges of a pulse wave velocity based blood pressure measurement in surgical patients.
    Zhang G; McCombie SA; Greenstein R; McCombie DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():574-7. PubMed ID: 25570024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Revised Point-to-Point Calibration Approach with Adaptive Errors Correction to Weaken Initial Sensitivity of Cuff-Less Blood Pressure Estimation.
    Shao J; Shi P; Hu S; Yu H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive Continuous Blood Pressure Estimation From Pulse Transit Time: A Review of the Calibration Models.
    Barvik D; Cerny M; Penhaker M; Noury N
    IEEE Rev Biomed Eng; 2022; 15():138-151. PubMed ID: 34487496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Neural Network Model for Blood Pressure Estimation Using Photoplethesmography without Electrocardiogram.
    Wang L; Zhou W; Xing Y; Zhou X
    J Healthc Eng; 2018; 2018():7804243. PubMed ID: 29707186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous blood pressure monitoring using ECG and finger photoplethysmogram.
    Chua CP; Heneghan C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5117-20. PubMed ID: 17946678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical validation of a suprasystolic brachial cuff-based method for estimating aortic pressure.
    Liang F
    Biomed Mater Eng; 2014; 24(1):1053-62. PubMed ID: 24211996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SOMNOtouch device as a novel method for measuring short-term blood pressure variability: a comparison with the Finometer.
    Manning LS; Robinson TG; Panerai RB
    Blood Press Monit; 2015 Dec; 20(6):361-8. PubMed ID: 26154853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating central systolic blood pressure during oscillometric determination of blood pressure: proof of concept and validation by comparison with intra-aortic pressure recording and arterial tonometry.
    Brett SE; Guilcher A; Clapp B; Chowienczyk P
    Blood Press Monit; 2012 Jun; 17(3):132-6. PubMed ID: 22466804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.
    Gholamhosseini H; Meintjes A; Baig M; Linden M
    Stud Health Technol Inform; 2016; 224():84-9. PubMed ID: 27225558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the N-point moving average method for brachial pressure waveform-derived estimation of central aortic systolic pressure.
    Shih YT; Cheng HM; Sung SH; Hu WC; Chen CH
    Hypertension; 2014 Apr; 63(4):865-70. PubMed ID: 24420554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Non-Invasive Continuous Blood Pressure Estimation Approach Based on Machine Learning.
    Chen S; Ji Z; Wu H; Xu Y
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cuffless Estimation of Blood Pressure: Importance of Variability in Blood Pressure Dependence of Arterial Stiffness Across Individuals and Measurement Sites.
    Butlin M; Shirbani F; Barin E; Tan I; Spronck B; Avolio AP
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2377-2383. PubMed ID: 29993392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous blood pressure measurement using the pulse transit time: Comparison to intra-arterial measurement.
    Patzak A; Mendoza Y; Gesche H; Konermann M
    Blood Press; 2015; 24(4):217-21. PubMed ID: 25857601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive continuous blood pressure measurement based on mean impact value method, BP neural network, and genetic algorithm.
    Tan X; Ji Z; Zhang Y
    Technol Health Care; 2018; 26(S1):87-101. PubMed ID: 29758957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
    Miao F; Fu N; Zhang YT; Ding XR; Hong X; He Q; Li Y
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1730-1740. PubMed ID: 28463207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.