These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 25197743)
1. Implementing visible 473 nm photodissociation in a Q-Exactive mass spectrometer: towards specific detection of cysteine-containing peptides. Girod M; Biarc J; Enjalbert Q; Salvador A; Antoine R; Dugourd P; Lemoine J Analyst; 2014 Nov; 139(21):5523-30. PubMed ID: 25197743 [TBL] [Abstract][Full Text] [Related]
2. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry. Chen SH; Hsu JL; Lin FS Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949 [TBL] [Abstract][Full Text] [Related]
3. Implementation of Ultraviolet Photodissociation on a Benchtop Q Exactive Mass Spectrometer and Its Application to Phosphoproteomics. Fort KL; Dyachenko A; Potel CM; Corradini E; Marino F; Barendregt A; Makarov AA; Scheltema RA; Heck AJ Anal Chem; 2016 Feb; 88(4):2303-10. PubMed ID: 26760441 [TBL] [Abstract][Full Text] [Related]
4. Fragmentation patterns of chromophore-tagged peptides in visible laser induced dissociation. Garcia L; Lemoine J; Dugourd P; Girod M Rapid Commun Mass Spectrom; 2017 Dec; 31(23):1985-1992. PubMed ID: 28884878 [TBL] [Abstract][Full Text] [Related]
5. Selective 351 nm photodissociation of cysteine-containing peptides for discrimination of antigen-binding regions of IgG fragments in bottom-up liquid chromatography-tandem mass spectrometry workflows. Cotham VC; Wine Y; Brodbelt JS Anal Chem; 2013 Jun; 85(11):5577-85. PubMed ID: 23641966 [TBL] [Abstract][Full Text] [Related]
6. Data-Independent Acquisition Coupled to Visible Laser-Induced Dissociation at 473 nm (DIA-LID) for Peptide-Centric Specific Analysis of Cysteine-Containing Peptide Subset. Garcia L; Girod M; Rompais M; Dugourd P; Carapito C; Lemoine J Anal Chem; 2018 Mar; 90(6):3928-3935. PubMed ID: 29465226 [TBL] [Abstract][Full Text] [Related]
7. Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. Kelstrup CD; Young C; Lavallee R; Nielsen ML; Olsen JV J Proteome Res; 2012 Jun; 11(6):3487-97. PubMed ID: 22537090 [TBL] [Abstract][Full Text] [Related]
8. Collision energies on QTof and Orbitrap instruments: How to make proteomics measurements comparable? Szabó D; Schlosser G; Vékey K; Drahos L; Révész Á J Mass Spectrom; 2021 Jan; 56(1):e4693. PubMed ID: 33277714 [TBL] [Abstract][Full Text] [Related]
9. A systematic investigation into the nature of tryptic HCD spectra. Michalski A; Neuhauser N; Cox J; Mann M J Proteome Res; 2012 Nov; 11(11):5479-91. PubMed ID: 22998608 [TBL] [Abstract][Full Text] [Related]
10. Statistical characterization of HCD fragmentation patterns of tryptic peptides on an LTQ Orbitrap Velos mass spectrometer. Shao C; Zhang Y; Sun W J Proteomics; 2014 Sep; 109():26-37. PubMed ID: 24981973 [TBL] [Abstract][Full Text] [Related]
11. Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. Frese CK; Altelaar AF; Hennrich ML; Nolting D; Zeller M; Griep-Raming J; Heck AJ; Mohammed S J Proteome Res; 2011 May; 10(5):2377-88. PubMed ID: 21413819 [TBL] [Abstract][Full Text] [Related]
12. MS2PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation. Degroeve S; Maddelein D; Martens L Nucleic Acids Res; 2015 Jul; 43(W1):W326-30. PubMed ID: 25990723 [TBL] [Abstract][Full Text] [Related]
14. Development and characterization of novel 8-plex DiLeu isobaric labels for quantitative proteomics and peptidomics. Frost DC; Greer T; Xiang F; Liang Z; Li L Rapid Commun Mass Spectrom; 2015 Jun; 29(12):1115-24. PubMed ID: 25981542 [TBL] [Abstract][Full Text] [Related]
15. Mass spectrometric de novo sequencing of natural non-tryptic peptides: comparing peculiarities of collision-induced dissociation (CID) and high energy collision dissociation (HCD). Samgina TY; Vorontsov EA; Gorshkov VA; Artemenko KA; Zubarev RA; Lebedev AT Rapid Commun Mass Spectrom; 2014 Dec; 28(23):2595-604. PubMed ID: 25366406 [TBL] [Abstract][Full Text] [Related]
16. Exploring ECD on a Benchtop Q Exactive Orbitrap Mass Spectrometer. Fort KL; Cramer CN; Voinov VG; Vasil'ev YV; Lopez NI; Beckman JS; Heck AJR J Proteome Res; 2018 Feb; 17(2):926-933. PubMed ID: 29249155 [TBL] [Abstract][Full Text] [Related]
17. Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer. Pfammatter S; Wu Z; Bonneil E; Bailey DJ; Prasad S; Belford M; Rochon J; Picard P; Lacoursière J; Dunyach JJ; Thibault P Anal Chem; 2021 Jul; 93(28):9817-9825. PubMed ID: 34213903 [TBL] [Abstract][Full Text] [Related]
18. [Enrichment strategy of cysteine-containing peptides based on covalent chromatography]. Mi W; Wang J; Ying W; Jia W; Cai Y; Qian X Se Pu; 2010 Feb; 28(2):108-14. PubMed ID: 20556946 [TBL] [Abstract][Full Text] [Related]
19. Improved detection specificity for plasma proteins by targeting cysteine-containing peptides with photo-SRM. Enjalbert Q; Girod M; Simon R; Jeudy J; Chirot F; Salvador A; Antoine R; Dugourd P; Lemoine J Anal Bioanal Chem; 2013 Mar; 405(7):2321-31. PubMed ID: 23325399 [TBL] [Abstract][Full Text] [Related]
20. Direct approach for qualitative and quantitative characterization of glycoproteins using tandem mass tags and an LTQ Orbitrap XL electron transfer dissociation hybrid mass spectrometer. Ye H; Boyne MT; Buhse LF; Hill J Anal Chem; 2013 Feb; 85(3):1531-9. PubMed ID: 23249142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]