These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 25197745)

  • 1. Three-dimensional printing fiber reinforced hydrogel composites.
    Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15998-6006. PubMed ID: 25197745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.
    Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM
    Macromol Rapid Commun; 2015 Jun; 36(12):1211-7. PubMed ID: 25864515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of alginate-based hydrogel bioprinting for application in tissue engineering.
    Rastogi P; Kandasubramanian B
    Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.
    Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K
    Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.
    Shang W; Liu Y; Wan W; Hu C; Liu Z; Wong CT; Fukuda T; Shen Y
    Biofabrication; 2017 Jun; 9(2):025032. PubMed ID: 28436920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
    Jin Y; Compaan A; Bhattacharjee T; Huang Y
    Biofabrication; 2016 Jun; 8(2):025016. PubMed ID: 27257095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations.
    Yang CH; Wang MX; Haider H; Yang JH; Sun JY; Chen YM; Zhou J; Suo Z
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10418-22. PubMed ID: 24128011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate.
    Omidian H; Rocca JG; Park K
    Macromol Biosci; 2006 Sep; 6(9):703-10. PubMed ID: 16967483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High strength and low friction of a PAA-alginate-silica hydrogel as potential material for artificial soft tissues.
    Lin HR; Ling MH; Lin YJ
    J Biomater Sci Polym Ed; 2009; 20(5-6):637-52. PubMed ID: 19323881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation.
    Park J; Lee SJ; Chung S; Lee JH; Kim WD; Lee JY; Park SA
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():678-684. PubMed ID: 27987760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting.
    Compaan AM; Song K; Huang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5714-5726. PubMed ID: 30644714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing facilitated scaffold-free tissue unit fabrication.
    Tan Y; Richards DJ; Trusk TC; Visconti RP; Yost MJ; Kindy MS; Drake CJ; Argraves WS; Markwald RR; Mei Y
    Biofabrication; 2014 Jun; 6(2):024111. PubMed ID: 24717646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-assisted printing of alginate long tubes and annular constructs.
    Yan J; Huang Y; Chrisey DB
    Biofabrication; 2013 Mar; 5(1):015002. PubMed ID: 23172571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
    Aroguz AZ; Baysal K; Adiguzel Z; Baysal BM
    Appl Biochem Biotechnol; 2014 May; 173(2):433-48. PubMed ID: 24728760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.