BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25197769)

  • 1. Proton conductivity control by ion substitution in a highly proton-conductive metal-organic framework.
    Sadakiyo M; Yamada T; Kitagawa H
    J Am Chem Soc; 2014 Sep; 136(38):13166-9. PubMed ID: 25197769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of crystalline proton-conducting pathways by water-induced transformations of hydrogen-bonding networks in a metal-organic framework.
    Sadakiyo M; Yamada T; Honda K; Matsui H; Kitagawa H
    J Am Chem Soc; 2014 May; 136(21):7701-7. PubMed ID: 24795110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton dynamics of two-dimensional oxalate-bridged coordination polymers.
    Miyatsu S; Kofu M; Nagoe A; Yamada T; Sadakiyo M; Yamada T; Kitagawa H; Tyagi M; García Sakai V; Yamamuro O
    Phys Chem Chem Phys; 2014 Aug; 16(32):17295-304. PubMed ID: 25019223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational designs for highly proton-conductive metal-organic frameworks.
    Sadakiyo M; Yamada T; Kitagawa H
    J Am Chem Soc; 2009 Jul; 131(29):9906-7. PubMed ID: 19621952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures and properties of large protonated water clusters encapsulated by metal-organic frameworks.
    Duan C; Wei M; Guo D; He C; Meng Q
    J Am Chem Soc; 2010 Mar; 132(10):3321-30. PubMed ID: 20014788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helical water chain mediated proton conductivity in homochiral metal-organic frameworks with unprecedented zeolitic unh-topology.
    Sahoo SC; Kundu T; Banerjee R
    J Am Chem Soc; 2011 Nov; 133(44):17950-8. PubMed ID: 21919488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing proton conduction in a metal-organic framework by isomorphous ligand replacement.
    Kim S; Dawson KW; Gelfand BS; Taylor JM; Shimizu GK
    J Am Chem Soc; 2013 Jan; 135(3):963-6. PubMed ID: 23286895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High proton conductivity of one-dimensional ferrous oxalate dihydrate.
    Yamada T; Sadakiyo M; Kitagawa H
    J Am Chem Soc; 2009 Mar; 131(9):3144-5. PubMed ID: 19226139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A partial proton transfer in hydrogen bond O-H···O in crystals of anhydrous potassium and rubidium complex chloranilates.
    Biliškov N; Kojić-Prodić B; Mali G; Molčanov K; Stare J
    J Phys Chem A; 2011 Apr; 115(14):3154-66. PubMed ID: 21428393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anhydrous 1:1 proton-transfer compounds of isonipecotamide with picric acid and 3,5-dinitrosalicylic acid: 4-carbamoylpiperidinium 2,4,6-trinitrophenolate and two polymorphs of 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate.
    Smith G; Wermuth UD
    Acta Crystallogr C; 2010 Dec; 66(Pt 12):o609-13. PubMed ID: 21123895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton-coupled electron transfer from a luminescent excited state.
    Freys JC; Bernardinelli G; Wenger OS
    Chem Commun (Camb); 2008 Sep; (36):4267-9. PubMed ID: 18802539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared spectroscopic study of SO₄²⁻ ions included in M'₂M''(SeO₄)₂⋅6H₂O (Me'=K, NH₄⁺; M''=Mg, Co, Ni, Cu, Zn) and NH₄⁺ ions included in K₂M(XO₄)₂⋅6H₂O (X=S, Se; M''=Mg, Co, Ni, Cu, Zn).
    Marinova D; Karadjova V; Stoilova D
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():526-34. PubMed ID: 25048287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High proton conduction at above 100 °C mediated by hydrogen bonding in a lanthanide metal-organic framework.
    Tang Q; Liu Y; Liu S; He D; Miao J; Wang X; Yang G; Shi Z; Zheng Z
    J Am Chem Soc; 2014 Sep; 136(35):12444-9. PubMed ID: 25137095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature.
    Sanda S; Biswas S; Konar S
    Inorg Chem; 2015 Feb; 54(4):1218-22. PubMed ID: 25594401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A water-stable metal-organic framework with highly acidic pores for proton-conducting applications.
    Taylor JM; Dawson KW; Shimizu GK
    J Am Chem Soc; 2013 Jan; 135(4):1193-6. PubMed ID: 23305324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced proton conductivity in amino acid based self-assembled non-porous hydrogen-bonded organic frameworks.
    Pramanik T; Anand A; Pandikassala A; Illathvalappil R; Kurungot S; Row TNG
    Chem Commun (Camb); 2022 May; 58(40):5972-5975. PubMed ID: 35481700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Displacement of the proton in hydrogen-bonded complexes of hydrogen fluoride by beryllium and magnesium ions.
    McDowell SA
    J Chem Phys; 2009 May; 130(18):184312. PubMed ID: 19449926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled one dimensional functionalized metal-organic nanotubes (MONTs) for proton conduction.
    Panda T; Kundu T; Banerjee R
    Chem Commun (Camb); 2012 Jun; 48(44):5464-6. PubMed ID: 22538292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton-conductive magnetic metal-organic frameworks, {NR3(CH2COOH)}[M(a)(II)M(b)(III)(ox)3]: effect of carboxyl residue upon proton conduction.
    Ōkawa H; Sadakiyo M; Yamada T; Maesato M; Ohba M; Kitagawa H
    J Am Chem Soc; 2013 Feb; 135(6):2256-62. PubMed ID: 23301940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of three coordination polymers based on a sulfonic-carboxylic ligand showing high proton conductivity.
    Zhao SN; Song XZ; Zhu M; Meng X; Wu LL; Song SY; Wang C; Zhang HJ
    Dalton Trans; 2015 Jan; 44(3):948-54. PubMed ID: 25406590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.