BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25197817)

  • 1. The contribution of bone and cartilage to the near-infrared spectrum of osteochondral tissue.
    McGoverin CM; Lewis K; Yang X; Bostrom MP; Pleshko N
    Appl Spectrosc; 2014; 68(10):1168-75. PubMed ID: 25197817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score.
    Afara I; Prasadam I; Crawford R; Xiao Y; Oloyede A
    Osteoarthritis Cartilage; 2012 Nov; 20(11):1367-73. PubMed ID: 22820498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near infrared spectroscopy for rapid determination of Mankin score components: a potential tool for quantitative characterization of articular cartilage at surgery.
    Afara IO; Prasadam I; Moody H; Crawford R; Xiao Y; Oloyede A
    Arthroscopy; 2014 Sep; 30(9):1146-55. PubMed ID: 24951136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.
    Palukuru UP; Hanifi A; McGoverin CM; Devlin S; Lelkes PI; Pleshko N
    Anal Chim Acta; 2016 Jul; 926():79-87. PubMed ID: 27216396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelength-dependent penetration depth of near infrared radiation into cartilage.
    Padalkar MV; Pleshko N
    Analyst; 2015 Apr; 140(7):2093-100. PubMed ID: 25630381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy.
    Baykal D; Irrechukwu O; Lin PC; Fritton K; Spencer RG; Pleshko N
    Appl Spectrosc; 2010 Oct; 64(10):1160-6. PubMed ID: 20925987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared fiber optic probe evaluation of degenerative cartilage correlates to histological grading.
    Hanifi A; Bi X; Yang X; Kavukcuoglu B; Lin PC; DiCarlo E; Spencer RG; Bostrom MP; Pleshko N
    Am J Sports Med; 2012 Dec; 40(12):2853-61. PubMed ID: 23108637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy.
    Afara IO; Prasadam I; Arabshahi Z; Xiao Y; Oloyede A
    Sci Rep; 2017 Sep; 7(1):11463. PubMed ID: 28904358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal Regression Method for Near-Infrared Spectroscopic Evaluation of Articular Cartilage.
    Prakash M; Sarin JK; Rieppo L; Afara IO; Töyräs J
    Appl Spectrosc; 2017 Oct; 71(10):2253-2262. PubMed ID: 28753034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.
    Palukuru UP; McGoverin CM; Pleshko N
    Matrix Biol; 2014 Sep; 38():3-11. PubMed ID: 25083813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near Infrared Spectroscopy Enables Differentiation of Mechanically and Enzymatically Induced Cartilage Injuries.
    Nippolainen E; Shaikh R; Virtanen V; Rieppo L; Saarakkala S; Töyräs J; Afara IO
    Ann Biomed Eng; 2020 Sep; 48(9):2343-2353. PubMed ID: 32300956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared spectroscopy enables quantitative evaluation of human cartilage biomechanical properties during arthroscopy.
    Prakash M; Joukainen A; Torniainen J; Honkanen MKM; Rieppo L; Afara IO; Kröger H; Töyräs J; Sarin JK
    Osteoarthritis Cartilage; 2019 Aug; 27(8):1235-1243. PubMed ID: 31026649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing human subchondral bone properties using near-infrared (NIR) spectroscopy.
    Afara IO; Florea C; Olumegbon IA; Eneh CT; Malo MKH; Korhonen RK; Töyräs J
    Sci Rep; 2018 Jun; 8(1):9733. PubMed ID: 29950563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving the Near-Infrared Spectrum of Articular Cartilage.
    Afara IO; Oloyede A
    Cartilage; 2021 Dec; 13(1_suppl):729S-737S. PubMed ID: 34643470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage.
    Afara I; Singh S; Oloyede A
    Med Eng Phys; 2013 Jan; 35(1):88-95. PubMed ID: 22824725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of cartilage defects with near-infrared spectroscopy (NIR): an ex vivo study.
    Spahn G; Plettenberg H; Nagel H; Kahl E; Klinger HM; Mückley T; Günther M; Hofmann GO; Mollenhauer JA
    Med Eng Phys; 2008 Apr; 30(3):285-92. PubMed ID: 17553725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Near-Infrared Spectroscopy with Needle Indentation and Histology for the Determination of Cartilage Thickness in the Large Animal Model Sheep.
    Horbert V; Lange M; Reuter T; Hoffmann M; Bischoff S; Borowski J; Schubert H; Driesch D; Mika J; Hurschler C; Kinne RW
    Cartilage; 2019 Apr; 10(2):173-185. PubMed ID: 28980486
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Kandel S; Querido W; Falcon JM; Zlotnick HM; Locke RC; Stoeckl B; Patel JM; Patil CA; Mauck RL; Pleshko N
    Front Bioeng Biotechnol; 2022; 10():885369. PubMed ID: 36082171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Histomorphometric analysis of articular cartilage and subchondral bone from primary osteoarthritic knees].
    Song W; Yang L; Wang F
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Dec; 25(12):1434-9. PubMed ID: 22242340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.
    McGoverin CM; Hanifi A; Palukuru UP; Yousefi F; Glenn PB; Shockley M; Spencer RG; Pleshko N
    Ann Biomed Eng; 2016 Mar; 44(3):680-92. PubMed ID: 26817457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.