These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25197956)

  • 1. Significant expansion of fluorescent protein sensing ability through the genetic incorporation of superior photo-induced electron-transfer quenchers.
    Liu X; Jiang L; Li J; Wang L; Yu Y; Zhou Q; Lv X; Gong W; Lu Y; Wang J
    J Am Chem Soc; 2014 Sep; 136(38):13094-7. PubMed ID: 25197956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photophysics of the LOV-Based Fluorescent Protein Variant iLOV-Q489K Determined by Simulation and Experiment.
    Davari MD; Kopka B; Wingen M; Bocola M; Drepper T; Jaeger KE; Schwaneberg U; Krauss U
    J Phys Chem B; 2016 Apr; 120(13):3344-52. PubMed ID: 26962999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent-protein-based probes: general principles and practices.
    Ai HW
    Anal Bioanal Chem; 2015 Jan; 407(1):9-15. PubMed ID: 25326886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids.
    Niu W; Guo J
    Mol Biosyst; 2013 Dec; 9(12):2961-70. PubMed ID: 24080788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the electron donor/acceptor orientation on the fluorescence transduction efficiency of the d-PET effect of carbazole-based fluorescent boronic acid sensors.
    Zhang X; Wu Y; Ji S; Guo H; Song P; Han K; Wu W; Wu W; James TD; Zhao J
    J Org Chem; 2010 Apr; 75(8):2578-88. PubMed ID: 20307091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Development of Genetically Encoded Fluorescent Sensors.
    Sanford L; Palmer A
    Methods Enzymol; 2017; 589():1-49. PubMed ID: 28336060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.
    Wu Y; Guo H; James TD; Zhao J
    J Org Chem; 2011 Jul; 76(14):5685-95. PubMed ID: 21619028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant-based FRET biosensor discriminates environmental zinc levels.
    Adams JP; Adeli A; Hsu CY; Harkess RL; Page GP; Depamphilis CW; Schultz EB; Yuceer C
    Plant Biotechnol J; 2012 Feb; 10(2):207-16. PubMed ID: 21910820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutants of the Flavoprotein iLOV as Prospective Red-Shifted Fluorescent Markers.
    Khrenova MG; Meteleshko YI; Nemukhin AV
    J Phys Chem B; 2017 Nov; 121(43):10018-10025. PubMed ID: 28992704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The design and application of genetically encodable biosensors based on fluorescent proteins.
    Newman RH; Zhang J
    Methods Mol Biol; 2014; 1071():1-16. PubMed ID: 24052376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast kinetics of calcium signaling and sensor design.
    Tang S; Reddish F; Zhuo Y; Yang JJ
    Curr Opin Chem Biol; 2015 Aug; 27():90-7. PubMed ID: 26151819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new turn-on fluorescent chemosensor based on diketopyrrolopyrrole (DPP) for imaging Zn2+ in living cells.
    Zhang G; Li H; Bi S; Song L; Lu Y; Zhang L; Yu J; Wang L
    Analyst; 2013 Oct; 138(20):6163-70. PubMed ID: 23971073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically encoded red fluorescent copper(I) sensors for cellular copper(I) imaging.
    Liang J; Guo L; Ding Y; Xia L; Shen Y; Qin M; Xu Q; Cao Y; Wang W
    Biochem Biophys Res Commun; 2014 Jan; 443(3):894-8. PubMed ID: 24380863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in luminescent proteins development.
    Saito K; Nagai T
    Curr Opin Chem Biol; 2015 Aug; 27():46-51. PubMed ID: 26094043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein.
    Donaldson T; Iozzino L; Deacon LJ; Billones H; Ausili A; D'Auria S; Dattelbaum JD
    Anal Biochem; 2017 May; 525():60-66. PubMed ID: 28259516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semisynthetic fluorescent sensor proteins based on self-labeling protein tags.
    Brun MA; Tan KT; Nakata E; Hinner MJ; Johnsson K
    J Am Chem Soc; 2009 Apr; 131(16):5873-84. PubMed ID: 19348459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Fluorescence-Based Biosensors Incorporating Unnatural Amino Acids.
    Niu W; Guo J
    Methods Enzymol; 2017; 589():191-219. PubMed ID: 28336064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two photon spectroscopy and microscopy of the fluorescent flavoprotein, iLOV.
    Homans RJ; Khan RU; Andrews MB; Kjeldsen AE; Natrajan LS; Marsden S; McKenzie EA; Christie JM; Jones AR
    Phys Chem Chem Phys; 2018 Jun; 20(25):16949-16955. PubMed ID: 29873653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering an FMN-based iLOV protein for the detection of arsenic ions.
    Ravikumar Y; Nadarajan SP; Lee CS; Yun H
    Anal Biochem; 2017 May; 525():38-43. PubMed ID: 28245978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent sensing of anions with acridinedione based neutral PET chemosensor.
    Thiagarajan V; Ramamurthy P
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):772-7. PubMed ID: 17081799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.