These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25197974)

  • 21. Cobalamin-dependent methionine synthase from Escherichia coli B: electron paramagnetic resonance spectra of the inactive form and the active methylated form of the enzyme.
    Frasca V; Banerjee RV; Dunham WR; Sands RH; Matthews RG
    Biochemistry; 1988 Nov; 27(22):8458-65. PubMed ID: 2853966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure and peroxidase activity of myoglobin reconstituted with iron porphycene.
    Hayashi T; Murata D; Makino M; Sugimoto H; Matsuo T; Sato H; Shiro Y; Hisaeda Y
    Inorg Chem; 2006 Dec; 45(26):10530-6. PubMed ID: 17173408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Axial solvent coordination in "base-fff" cob(II)alamin and related co(II)-corrinates revealed by 2D-EPR.
    Van Doorslaer S; Jeschke G; Epel B; Goldfarb D; Eichel RA; Kräutler B; Schweiger A
    J Am Chem Soc; 2003 May; 125(19):5915-27. PubMed ID: 12733932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Domain alternation switches B(12)-dependent methionine synthase to the activation conformation.
    Bandarian V; Pattridge KA; Lennon BW; Huddler DP; Matthews RG; Ludwig ML
    Nat Struct Biol; 2002 Jan; 9(1):53-6. PubMed ID: 11731805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox Potentials of Cobalt Corrinoids with Axial Ligands Correlate with Heterolytic Co-C Bond Dissociation Energies.
    Morita Y; Oohora K; Sawada A; Kamachi T; Yoshizawa K; Hayashi T
    Inorg Chem; 2017 Feb; 56(4):1950-1955. PubMed ID: 28165219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A protein radical cage slows photolysis of methylcobalamin in methionine synthase from Escherichia coli.
    Jarrett JT; Drennan CL; Amaratunga M; Scholten JD; Ludwig ML; Matthews RG
    Bioorg Med Chem; 1996 Aug; 4(8):1237-46. PubMed ID: 8879545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electronic structure of cofactor-substrate reactant complex involved in the methyl transfer reaction catalyzed by cobalamin-dependent methionine synthase.
    Kumar N; Jaworska M; Lodowski P; Kumar M; Kozlowski PM
    J Phys Chem B; 2011 May; 115(20):6722-31. PubMed ID: 21539330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of flavodoxin with cobalamin-dependent methionine synthase.
    Hall DA; Jordan-Starck TC; Loo RO; Ludwig ML; Matthews RG
    Biochemistry; 2000 Sep; 39(35):10711-9. PubMed ID: 10978155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrite reduction by Co(II) and Mn(II) substituted myoglobins: towards understanding necessary components of Mb nitrite reductase activity.
    Heinecke JL; Yi J; Pereira JC; Richter-Addo GB; Ford PC
    J Inorg Biochem; 2012 Feb; 107(1):47-53. PubMed ID: 22178665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cobalamin uptake and reactivation occurs through specific protein interactions in the methionine synthase-methionine synthase reductase complex.
    Wolthers KR; Scrutton NS
    FEBS J; 2009 Apr; 276(7):1942-51. PubMed ID: 19243433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic insights for formation of an organometallic Co-C bond in the methyl transfer reaction catalyzed by methionine synthase.
    Kumar N; Kozlowski PM
    J Phys Chem B; 2013 Dec; 117(50):16044-57. PubMed ID: 24164324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations in the B12-binding region of methionine synthase: how the protein controls methylcobalamin reactivity.
    Jarrett JT; Amaratunga M; Drennan CL; Scholten JD; Sands RH; Ludwig ML; Matthews RG
    Biochemistry; 1996 Feb; 35(7):2464-75. PubMed ID: 8652590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How is a co-methyl intermediate formed in the reaction of cobalamin-dependent methionine synthase? Theoretical evidence for a two-step methyl cation transfer mechanism.
    Chen SL; Blomberg MR; Siegbahn PE
    J Phys Chem B; 2011 Apr; 115(14):4066-77. PubMed ID: 21417249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ligand trans influence governs conformation in cobalamin-dependent methionine synthase.
    Fleischhacker AS; Matthews RG
    Biochemistry; 2007 Oct; 46(43):12382-92. PubMed ID: 17924667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of cobalamin-independent methionine synthase complexed with zinc, homocysteine, and methyltetrahydrofolate.
    Ferrer JL; Ravanel S; Robert M; Dumas R
    J Biol Chem; 2004 Oct; 279(43):44235-8. PubMed ID: 15326182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilizing intramolecular cobalt-imidazole coordination with a remote methyl group in the backbone of a cofactor B
    Sonnay M; Zelder F
    Dalton Trans; 2018 Aug; 47(31):10443-10446. PubMed ID: 30019725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reactivity of B12 cofactors: the proteins make a difference.
    Ludwig ML; Drennan CL; Matthews RG
    Structure; 1996 May; 4(5):505-12. PubMed ID: 8736549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co2+/Co+ redox tuning in methyltransferases induced by a conformational change at the axial ligand.
    Kumar M; Kumar N; Hirao H; Kozlowski PM
    Inorg Chem; 2012 May; 51(10):5533-8. PubMed ID: 22548450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of conversion of human apo- to holomethionine synthase by various forms of cobalamin.
    Kolhouse JF; Utley C; Stabler SP; Allen RH
    J Biol Chem; 1991 Dec; 266(34):23010-5. PubMed ID: 1744096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NO binding to cobalamin: influence of the metal oxidation state.
    Selçuki C; van Eldik R; Clark T
    Inorg Chem; 2004 May; 43(9):2828-33. PubMed ID: 15106969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.