These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 25198058)
21. Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting. Gun Y; Song GY; Quy VH; Heo J; Lee H; Ahn KS; Kang SH ACS Appl Mater Interfaces; 2015 Sep; 7(36):20292-303. PubMed ID: 26322646 [TBL] [Abstract][Full Text] [Related]
22. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214 [TBL] [Abstract][Full Text] [Related]
23. Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Wu H; Xu C; Xu J; Lu L; Fan Z; Chen X; Song Y; Li D Nanotechnology; 2013 Nov; 24(45):455401. PubMed ID: 24141177 [TBL] [Abstract][Full Text] [Related]
24. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. Wang WC; Lin CW; Chen HJ; Chang CW; Huang JJ; Yang MJ; Tjahjono B; Huang JJ; Hsu WC; Chen MJ ACS Appl Mater Interfaces; 2013 Oct; 5(19):9752-9. PubMed ID: 24028609 [TBL] [Abstract][Full Text] [Related]
25. Facet cutting and hydrogenation of In(2)O(3) nanowires for enhanced photoelectrochemical water splitting. Meng M; Wu X; Zhu X; Zhu X; Chu PK ACS Appl Mater Interfaces; 2014 Mar; 6(6):4081-8. PubMed ID: 24568166 [TBL] [Abstract][Full Text] [Related]
26. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924 [TBL] [Abstract][Full Text] [Related]
27. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting. Wang L; Nguyen NT; Schmuki P ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809 [TBL] [Abstract][Full Text] [Related]
28. Novel phosphorus doped carbon nitride modified TiO₂ nanotube arrays with improved photoelectrochemical performance. Su J; Geng P; Li X; Zhao Q; Quan X; Chen G Nanoscale; 2015 Oct; 7(39):16282-9. PubMed ID: 26376767 [TBL] [Abstract][Full Text] [Related]
29. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting. Miao J; Yang HB; Khoo SY; Liu B Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389 [TBL] [Abstract][Full Text] [Related]
30. Photoelectrochemical Hydrogen Production of TiO2 Passivated Pt/Si-Nanowire Composite Photocathode. Li S; Zhang P; Song X; Gao L ACS Appl Mater Interfaces; 2015 Aug; 7(33):18560-5. PubMed ID: 26263477 [TBL] [Abstract][Full Text] [Related]
31. Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts. Qiu J; Zeng G; Pavaskar P; Li Z; Cronin SB Phys Chem Chem Phys; 2014 Feb; 16(7):3115-21. PubMed ID: 24401904 [TBL] [Abstract][Full Text] [Related]
32. Enhanced photoelectrochemical water splitting efficiency of hematite electrodes with aqueous metal ions as in situ homogenous surface passivation agents. Wang TH; Cheng YJ; Wu YY; Lin CA; Chiang CC; Hsieh YK; Wang CF; Huang CP Phys Chem Chem Phys; 2016 Oct; 18(42):29300-29307. PubMed ID: 27731868 [TBL] [Abstract][Full Text] [Related]
33. Enhanced Photoelectrochemical Water-Splitting Property on TiO Zhang T; Lin P; Wei N; Wang D ACS Appl Mater Interfaces; 2020 Apr; 12(17):20110-20118. PubMed ID: 32255600 [TBL] [Abstract][Full Text] [Related]
34. Hydrogenated TiO Meng M; Zhou S; Yang L; Gan Z; Liu K; Tian F; Zhu Y; Li C; Liu W; Yuan H; Zhang Y Nanotechnology; 2018 Apr; 29(15):155401. PubMed ID: 29372889 [TBL] [Abstract][Full Text] [Related]
35. An investigation on electron behavior employing vertically-aligned TiO2 nanotube electrodes for dye-sensitized solar cells. Kang SH; Kim HS; Kim JY; Sung YE Nanotechnology; 2009 Sep; 20(35):355307. PubMed ID: 19671961 [TBL] [Abstract][Full Text] [Related]
36. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. Hernández S; Cauda V; Chiodoni A; Dallorto S; Sacco A; Hidalgo D; Celasco E; Pirri CF ACS Appl Mater Interfaces; 2014 Aug; 6(15):12153-67. PubMed ID: 24983821 [TBL] [Abstract][Full Text] [Related]
37. 2D ZnIn(2)S(4) nanosheet/1D TiO(2) nanorod heterostructure arrays for improved photoelectrochemical water splitting. Liu Q; Lu H; Shi Z; Wu F; Guo J; Deng K; Li L ACS Appl Mater Interfaces; 2014 Oct; 6(19):17200-7. PubMed ID: 25225738 [TBL] [Abstract][Full Text] [Related]
38. Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. Li Z; Yao C; Wang F; Cai Z; Wang X Nanotechnology; 2014 Dec; 25(50):504005. PubMed ID: 25426973 [TBL] [Abstract][Full Text] [Related]
39. Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. Yang X; Liu R; Du C; Dai P; Zheng Z; Wang D ACS Appl Mater Interfaces; 2014 Aug; 6(15):12005-11. PubMed ID: 25069041 [TBL] [Abstract][Full Text] [Related]
40. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes. Simon DK; Jordan PM; Mikolajick T; Dirnstorfer I ACS Appl Mater Interfaces; 2015 Dec; 7(51):28215-22. PubMed ID: 26618751 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]