These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 25198058)
41. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films. Hu C; Chu K; Zhao Y; Teoh WY ACS Appl Mater Interfaces; 2014 Nov; 6(21):18558-68. PubMed ID: 25325731 [TBL] [Abstract][Full Text] [Related]
42. Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting. Shen S; Li M; Guo L; Jiang J; Mao SS J Colloid Interface Sci; 2014 Aug; 427():20-4. PubMed ID: 24290228 [TBL] [Abstract][Full Text] [Related]
43. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3. Liu Y; Xu Z; Yin M; Fan H; Cheng W; Lu L; Song Y; Ma J; Zhu X Nanoscale Res Lett; 2015 Dec; 10(1):374. PubMed ID: 26415539 [TBL] [Abstract][Full Text] [Related]
44. Coating Polymeric Carbon Nitride Photoanodes on Conductive Y:ZnO Nanorod Arrays for Overall Water Splitting. Fang Y; Xu Y; Li X; Ma Y; Wang X Angew Chem Int Ed Engl; 2018 Jul; 57(31):9749-9753. PubMed ID: 29901252 [TBL] [Abstract][Full Text] [Related]
46. Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NO(x) gas sensors at room temperature. Lü R; Zhou W; Shi K; Yang Y; Wang L; Pan K; Tian C; Ren Z; Fu H Nanoscale; 2013 Sep; 5(18):8569-76. PubMed ID: 23892951 [TBL] [Abstract][Full Text] [Related]
47. Angstrom Thick ZnO Passivation Layer to Improve the Photoelectrochemical Water Splitting Performance of a TiO Ghobadi A; Ghobadi TGU; Karadas F; Ozbay E Sci Rep; 2018 Nov; 8(1):16322. PubMed ID: 30397219 [TBL] [Abstract][Full Text] [Related]
48. Fe Gao Y; Li Y; Yang G; Li S; Xiao N; Xu B; Liu S; Qiu P; Hao S; Ge L ACS Appl Mater Interfaces; 2018 Nov; 10(46):39713-39722. PubMed ID: 30346126 [TBL] [Abstract][Full Text] [Related]
49. A high-efficiency and stable cupric oxide photocathode coupled with Al surface plasmon resonance and Al Xing H; E L; Zhao D; Li X; Ruan M; Liu Z Chem Commun (Camb); 2019 Dec; 55(100):15093-15096. PubMed ID: 31782434 [TBL] [Abstract][Full Text] [Related]
50. Optimization for visible light photocatalytic water splitting: gold-coated and surface-textured TiO2 inverse opal nano-networks. Kim K; Thiyagarajan P; Ahn HJ; Kim SI; Jang JH Nanoscale; 2013 Jul; 5(14):6254-60. PubMed ID: 23733045 [TBL] [Abstract][Full Text] [Related]
51. Black 3D-TiO Meng M; Feng Y; Li C; Gan Z; Yuan H; Zhang H Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564156 [TBL] [Abstract][Full Text] [Related]
52. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting. Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730 [TBL] [Abstract][Full Text] [Related]
53. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Das C; Roy P; Yang M; Jha H; Schmuki P Nanoscale; 2011 Aug; 3(8):3094-6. PubMed ID: 21761039 [TBL] [Abstract][Full Text] [Related]
54. CdS/Zr:Fe Mahadik MA; Subramanian A; Chung HS; Cho M; Jang JS ChemSusChem; 2017 May; 10(9):2030-2039. PubMed ID: 28317268 [TBL] [Abstract][Full Text] [Related]
55. Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production. Chiu YH; Lai TH; Chen CY; Hsieh PY; Ozasa K; Niinomi M; Okada K; Chang TM; Matsushita N; Sone M; Hsu YJ ACS Appl Mater Interfaces; 2018 Jul; 10(27):22997-23008. PubMed ID: 29664283 [TBL] [Abstract][Full Text] [Related]
56. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Chen Y; Li A; Yue X; Wang LN; Huang ZH; Kang F; Volinsky AA Nanoscale; 2016 Jul; 8(27):13228-35. PubMed ID: 26926569 [TBL] [Abstract][Full Text] [Related]
57. Passivation of surface states by ALD-grown TiO2 overlayers on Ta3N5 anodes for photoelectrochemical water oxidation. Zhang P; Wang T; Gong J Chem Commun (Camb); 2016 Jul; 52(57):8806-9. PubMed ID: 27292872 [TBL] [Abstract][Full Text] [Related]
58. Fluorine-doped porous single-crystal rutile TiO2 nanorods for enhancing photoelectrochemical water splitting. Fang WQ; Huo Z; Liu P; Wang XL; Zhang M; Jia Y; Zhang H; Zhao H; Yang HG; Yao X Chemistry; 2014 Sep; 20(36):11439-44. PubMed ID: 25059762 [TBL] [Abstract][Full Text] [Related]
59. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector. Guo H; Zhang X; Chen H; Zhang P; Liu H; Chang H; Zhao W; Liao Q; Cui Y Opt Express; 2013 Sep; 21(18):21456-65. PubMed ID: 24104020 [TBL] [Abstract][Full Text] [Related]
60. High and stable photoelectrochemical activity of ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays: nanoporous surface with Cu(x)S as a hole mediator. Ouyang WX; Yu YX; Zhang WD Phys Chem Chem Phys; 2015 Jun; 17(22):14827-35. PubMed ID: 25978305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]