These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25198888)

  • 21. Isolation, in vitro evaluation and molecular docking of acetylcholinesterase inhibitors from South African Amaryllidaceae.
    Sibanyoni MN; Chaudhary SK; Chen W; Adhami HR; Combrinck S; Maharaj V; Schuster D; Viljoen A
    Fitoterapia; 2020 Oct; 146():104650. PubMed ID: 32479767
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis.
    Chadha N; Tiwari AK; Kumar V; Lal S; Milton MD; Mishra AK
    J Biomol Struct Dyn; 2015; 33(5):978-90. PubMed ID: 24805972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Steroidal alkaloids from Holarrhena antidysenterica as acetylcholinesterase inhibitors and the investigation for structure-activity relationships.
    Yang ZD; Duan DZ; Xue WW; Yao XJ; Li S
    Life Sci; 2012 Jun; 90(23-24):929-33. PubMed ID: 22569298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular recognition of rosmarinic acid from Salvia sclareoides extracts by acetylcholinesterase: a new binding site detected by NMR spectroscopy.
    Marcelo F; Dias C; Martins A; Madeira PJ; Jorge T; Florêncio MH; Cañada FJ; Cabrita EJ; Jiménez-Barbero J; Rauter AP
    Chemistry; 2013 May; 19(21):6641-9. PubMed ID: 23536497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors.
    Sonmez F; Zengin Kurt B; Gazioglu I; Basile L; Dag A; Cappello V; Ginex T; Kucukislamoglu M; Guccione S
    J Enzyme Inhib Med Chem; 2017 Dec; 32(1):285-297. PubMed ID: 28097911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amaryllidaceae alkaloids with new framework types from Zephyranthes candida as potent acetylcholinesterase inhibitors.
    Zhan G; Liu J; Zhou J; Sun B; Aisa HA; Yao G
    Eur J Med Chem; 2017 Feb; 127():771-780. PubMed ID: 27823880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new depsidone and antibacterial activities of compounds from Usnea undulata Stirton.
    Sultana N; Afolayan AJ
    J Asian Nat Prod Res; 2011 Dec; 13(12):1158-64. PubMed ID: 22115039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced amyloid-beta aggregation.
    Bolognesi ML; Andrisano V; Bartolini M; Banzi R; Melchiorre C
    J Med Chem; 2005 Jan; 48(1):24-7. PubMed ID: 15633997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of α-oxycarbanilinophosphonates and their anticholinesterase activities: the most potent derivative is bound to the peripheral site of acetylcholinesterase.
    Kaboudin B; Emadi S; Faghihi MR; Fallahi M; Sheikh-Hasani V
    J Enzyme Inhib Med Chem; 2013 Jun; 28(3):576-82. PubMed ID: 22397393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico design and search for acetylcholinesterase inhibitors in Alzheimer's disease with a suitable pharmacokinetic profile and low toxicity.
    da Silva VB; de Andrade P; Kawano DF; Morais PA; de Almeida JR; Carvalho I; Taft CA; da Silva CH
    Future Med Chem; 2011 Jun; 3(8):947-60. PubMed ID: 21707398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitory activities of lichen-derived compounds against methicillin- and multidrug-resistant Staphylococcus aureus.
    Kokubun T; Shiu WK; Gibbons S
    Planta Med; 2007 Feb; 73(2):176-9. PubMed ID: 17415880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations.
    Vitorović-Todorović MD; Koukoulitsa C; Juranić IO; Mandić LM; Drakulić BJ
    Eur J Med Chem; 2014 Jun; 81():158-75. PubMed ID: 24836068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of depsidones from Hypogymnia physodes on HeLa cell viability and growth.
    Stojanović IZ; Najman S; Jovanović O; Petrović G; Najdanović J; Vasiljević P; Smelcerović A
    Folia Biol (Praha); 2014; 60(2):89-94. PubMed ID: 24785112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Activity of Sesquiterpene Lactones and Chicory Extracts as Acetylcholinesterase Inhibitors Assayed in Calorimetric and Docking Simulation Studies.
    Jaśkiewicz A; Budryn G; Carmena-Bargueño M; Pérez-Sánchez H
    Nutrients; 2022 Sep; 14(17):. PubMed ID: 36079888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2-(2-indolyl-)-4(3H)-quinazolines derivates as new inhibitors of AChE: design, synthesis, biological evaluation and molecular modelling.
    Li Z; Wang B; Hou JQ; Huang SL; Ou TM; Tan JH; An LK; Li D; Gu LQ; Huang ZS
    J Enzyme Inhib Med Chem; 2013 Jun; 28(3):583-92. PubMed ID: 22380775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation, anticholinesterase activity, and docking study of new 2-butenediamide and oxalamide derivatives.
    Yerdelen KO; Koca M; Kasap Z; Anil B
    J Enzyme Inhib Med Chem; 2015; 30(4):671-8. PubMed ID: 25431144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors.
    Liu HR; Liu XJ; Fan HQ; Tang JJ; Gao XH; Liu WK
    Bioorg Med Chem; 2014 Nov; 22(21):6124-33. PubMed ID: 25260958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new depsidone derivative from mangrove sediment derived fungus
    Umeokoli BO; Ebrahim W; El-Neketi M; Müller WEG; Kalscheuer R; Lin W; Liu Z; Proksch P
    Nat Prod Res; 2019 Aug; 33(15):2215-2222. PubMed ID: 30124067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isocorilagin, a cholinesterase inhibitor from Phyllanthus niruri.
    Koay YH; Basiri A; Murugaiyah V; Chan KL
    Nat Prod Commun; 2014 Apr; 9(4):515-7. PubMed ID: 24868872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimitotic activity of lobaric acid and a new benzofuran, sakisacaulon A from Stereocaulon sasakii.
    Morita H; Tsuchiya T; Kishibe K; Noya S; Shiro M; Hirasawa Y
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3679-81. PubMed ID: 19481447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.