These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25199146)

  • 1. Intrathecal Transplantation of Autologous Adherent Bone Marrow Cells Induces Functional Neurological Recovery in a Canine Model of Spinal Cord Injury.
    Gabr H; El-Kheir WA; Farghali HA; Ismail ZM; Zickri MB; El Maadawi ZM; Kishk NA; Sabaawy HE
    Cell Transplant; 2015; 24(9):1813-27. PubMed ID: 25199146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients.
    El-Kheir WA; Gabr H; Awad MR; Ghannam O; Barakat Y; Farghali HA; El Maadawi ZM; Ewes I; Sabaawy HE
    Cell Transplant; 2014 Apr; 23(6):729-45. PubMed ID: 23452836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury.
    Jung DI; Ha J; Kang BT; Kim JW; Quan FS; Lee JH; Woo EJ; Park HM
    J Neurol Sci; 2009 Oct; 285(1-2):67-77. PubMed ID: 19555980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone marrow stem cells and polymer hydrogels--two strategies for spinal cord injury repair.
    Syková E; Jendelová P; Urdzíková L; Lesný P; Hejcl A
    Cell Mol Neurobiol; 2006; 26(7-8):1113-29. PubMed ID: 16633897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury.
    Karimi-Abdolrezaee S; Eftekharpour E; Wang J; Morshead CM; Fehlings MG
    J Neurosci; 2006 Mar; 26(13):3377-89. PubMed ID: 16571744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation.
    Furuya T; Hashimoto M; Koda M; Okawa A; Murata A; Takahashi K; Yamashita T; Yamazaki M
    Brain Res; 2009 Oct; 1295():192-202. PubMed ID: 19651108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord.
    Yano S; Kuroda S; Lee JB; Shichinohe H; Seki T; Ikeda J; Nishimura G; Hida K; Tamura M; Iwasaki Y
    J Neurotrauma; 2005 Aug; 22(8):907-18. PubMed ID: 16083357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell-derived Schwann cells after contusion injury to the adult rat spinal cord.
    Someya Y; Koda M; Dezawa M; Kadota T; Hashimoto M; Kamada T; Nishio Y; Kadota R; Mannoji C; Miyashita T; Okawa A; Yoshinaga K; Yamazaki M
    J Neurosurg Spine; 2008 Dec; 9(6):600-10. PubMed ID: 19035756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of autologous bone marrow mononuclear cell transplantation in dogs with chronic spinal cord injury.
    Tamura K; Maeta N
    Open Vet J; 2020 Aug; 10(2):206-215. PubMed ID: 32821665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplanted bone marrow stromal cells promote axonal regeneration and improve motor function in a rat spinal cord injury model.
    Chiba Y; Kuroda S; Maruichi K; Osanai T; Hokari M; Yano S; Shichinohe H; Hida K; Iwasaki Y
    Neurosurgery; 2009 May; 64(5):991-9; discussion 999-1000. PubMed ID: 19404159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: safety considerations and possible outcomes.
    Oraee-Yazdani S; Akhlaghpasand M; Golmohammadi M; Hafizi M; Zomorrod MS; Kabir NM; Oraee-Yazdani M; Ashrafi F; Zali A; Soleimani M
    Stem Cell Res Ther; 2021 Aug; 12(1):445. PubMed ID: 34372939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NeuroRegen Scaffolds Combined with Autologous Bone Marrow Mononuclear Cells for the Repair of Acute Complete Spinal Cord Injury: A 3-Year Clinical Study.
    Chen W; Zhang Y; Yang S; Sun J; Qiu H; Hu X; Niu X; Xiao Z; Zhao Y; Zhou Y; Dai J; Chu T
    Cell Transplant; 2020; 29():963689720950637. PubMed ID: 32862715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells' migration into the injured site.
    Callera F; de Melo CM
    Stem Cells Dev; 2007 Jun; 16(3):461-6. PubMed ID: 17610376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat.
    Han X; Yang N; Cui Y; Xu Y; Dang G; Song C
    Neurosci Lett; 2012 Jul; 521(2):136-41. PubMed ID: 22683506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration.
    Lin L; Lin H; Bai S; Zheng L; Zhang X
    Neurochem Int; 2018 May; 115():80-84. PubMed ID: 29458076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraspinal cord graft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat's spinal cord injury.
    Ban DX; Kong XH; Feng SQ; Ning GZ; Chen JT; Guo SF
    Brain Res; 2009 Feb; 1256():149-61. PubMed ID: 19103176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow-derived cells into injured spinal cord and promotes functional recovery after compression-induced spinal cord injury in mice.
    Koda M; Nishio Y; Kamada T; Someya Y; Okawa A; Mori C; Yoshinaga K; Okada S; Moriya H; Yamazaki M
    Brain Res; 2007 May; 1149():223-31. PubMed ID: 17391650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury.
    Syková E; Homola A; Mazanec R; Lachmann H; Konrádová SL; Kobylka P; Pádr R; Neuwirth J; Komrska V; Vávra V; Stulík J; Bojar M
    Cell Transplant; 2006; 15(8-9):675-87. PubMed ID: 17269439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.