These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25199417)

  • 21. The use of computer navigation in hip arthroplasty: literature review and evidence today.
    Punwar S; Khan WS; Longo UG
    Ortop Traumatol Rehabil; 2011; 13(5):431-8. PubMed ID: 22147432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current topics in robotic-assisted total hip arthroplasty: a review.
    Perets I; Mu BH; Mont MA; Rivkin G; Kandel L; Domb BG
    Hip Int; 2020 Mar; 30(2):118-124. PubMed ID: 31868012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of biomechanics and engineering in total hip replacement. Why surgeons need technical help.
    Jeffers JR
    Proc Inst Mech Eng H; 2012 Dec; 226(12):947-54. PubMed ID: 23636958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tailor-made surgical guide based on rapid prototyping technique for cup insertion in total hip arthroplasty.
    Hananouchi T; Saito M; Koyama T; Hagio K; Murase T; Sugano N; Yoshikawa H
    Int J Med Robot; 2009 Jun; 5(2):164-9. PubMed ID: 19248055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct anterior approach to total hip arthroplasty using computer navigation.
    Kreuzer S; Leffers K
    Bull NYU Hosp Jt Dis; 2011; 69 Suppl 1():S52-5. PubMed ID: 22035486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robotic-assisted unicompartmental knee arthroplasty: the MAKO experience.
    Roche M
    Clin Sports Med; 2014 Jan; 33(1):123-32. PubMed ID: 24274850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robotic surgery in hip and knee arthroplasty.
    Konan S; Maden C; Robbins A
    Br J Hosp Med (Lond); 2017 Jul; 78(7):378-384. PubMed ID: 28692365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of robot-assisted and conventional total knee arthroplasty: a controlled cadaver study using multiparameter quantitative three-dimensional CT assessment of alignment.
    Moon YW; Ha CW; Do KH; Kim CY; Han JH; Na SE; Lee CH; Kim JG; Park YS
    Comput Aided Surg; 2012; 17(2):86-95. PubMed ID: 22348661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Accuracy improvement of acetabular component placement using non-image based surgical navigation system].
    Yu Z; Wang L; Gui J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Oct; 21(10):1057-61. PubMed ID: 17990769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of component positioning in primary total hip arthroplasty using an imageless navigation device compared with traditional methods.
    Najarian BC; Kilgore JE; Markel DC
    J Arthroplasty; 2009 Jan; 24(1):15-21. PubMed ID: 18534411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The primary stability between manual and robot assisted implantation of hip prostheses: A biomechanical study on synthetic femurs].
    Decking J; Gerber A; Kränzlein J; Meurer A; Böhm B; Plitz W
    Z Orthop Ihre Grenzgeb; 2004; 142(3):309-13. PubMed ID: 15250003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Technique evaluation for orthopedic use of Robodoc].
    Schräder P
    Z Orthop Ihre Grenzgeb; 2005; 143(3):329-36. PubMed ID: 15977123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer-assisted navigation in hip resurfacing arthroplasty - a single-surgeon experience.
    Shields JS; Seyler TM; Maguire C; Jinnah RH
    Bull NYU Hosp Jt Dis; 2009; 67(2):164-7. PubMed ID: 19583547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of 3-Dimensional Functional Planning for Total Hip Arthroplasty with a Robotic Platform.
    Hepinstall MS; Naylor B; Salem HS; Mont MA
    Surg Technol Int; 2020 Nov; 37():395-403. PubMed ID: 33238025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imageless navigation for insertion of the acetabular component in total hip arthroplasty: is it as accurate as CT-based navigation?
    Kalteis T; Handel M; Bäthis H; Perlick L; Tingart M; Grifka J
    J Bone Joint Surg Br; 2006 Feb; 88(2):163-7. PubMed ID: 16434517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Minimally invasive approaches to the hip joint for total hip arthroplasty: state of the art within the scope of the "OrthoMIT" project for the development of an integrated platform for smart interventional orthopaedic surgery and traumatology].
    Gravius S; Wirtz DC; Maus U; Andereya S; Müller-Rath R; Mumme T
    Z Orthop Unfall; 2007; 145(5):608-14. PubMed ID: 17939071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robotic joint replacement surgery: does technology improve outcomes?
    Hill C; El-Bash R; Johnson L; Coustasse A
    Health Care Manag (Frederick); 2015; 34(2):128-36. PubMed ID: 25909400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accuracy of imageless stem navigation during simulated total hip arthroplasty.
    Renkawitz T; Sendtner E; Grifka J; Kalteis T
    Acta Orthop; 2008 Dec; 79(6):785-8. PubMed ID: 19085495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Total hip arthroplasty in osteopetrosis using computer-assisted fluoroscopic navigation.
    Egawa H; Nakano S; Hamada D; Sato R; Yasui N
    J Arthroplasty; 2005 Dec; 20(8):1074-7. PubMed ID: 16376266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of the evolution of robotic-assisted total hip arthroplasty.
    Subramanian P; Wainwright TW; Bahadori S; Middleton RG
    Hip Int; 2019 May; 29(3):232-238. PubMed ID: 30963802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.