These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 25199795)
1. Selective generation of formamides through photocatalytic CO2 reduction catalyzed by ruthenium carbonyl compounds. Kobayashi K; Kikuchi T; Kitagawa S; Tanaka K Angew Chem Int Ed Engl; 2014 Oct; 53(44):11813-7. PubMed ID: 25199795 [TBL] [Abstract][Full Text] [Related]
2. Reactivity of CO2 Activated on Transition Metals and Sulfur Ligands. Kobayashi K; Tanaka K Inorg Chem; 2015 Jun; 54(11):5085-95. PubMed ID: 25978130 [TBL] [Abstract][Full Text] [Related]
3. Approach to multi-electron reduction beyond two-electron reduction of CO2. Kobayashi K; Tanaka K Phys Chem Chem Phys; 2014 Feb; 16(6):2240-50. PubMed ID: 24382494 [TBL] [Abstract][Full Text] [Related]
4. Ionic liquids as a novel medium for photochemical reactions. Ru(bpy)(3)2+/ viologen in imidazolium ionic liquid as a photocatalytic system mimicking the oxido-reductase enzyme. Alvaro M; Carbonell E; Ferrer B; Garcia H; Herance JR Photochem Photobiol; 2006; 82(1):185-90. PubMed ID: 16231987 [TBL] [Abstract][Full Text] [Related]
5. Photoinduced electron-transfer processes based on novel bipyridine-Ru(II) complex: properties of cis-[Ru(2,2'-bipyridine)2(5,6-bis(3-amidopyridine)-7-oxanorbornene)](PF6)2 and cis-[Ru(2,2'-bipyridine)2(3-aminopyridine)2](PF6)2 complexes. Inglez SD; Lima FC; Silva AB; Simioni AR; Tedesco AC; Daniel JF; Lima-Neto BS; Carlos RM Inorg Chem; 2007 Jul; 46(14):5744-53. PubMed ID: 17566998 [TBL] [Abstract][Full Text] [Related]
6. Development of an efficient and durable photocatalytic system for hydride reduction of an NAD(P)+ model compound using a ruthenium(II) complex based on mechanistic studies. Matsubara Y; Koga K; Kobayashi A; Konno H; Sakamoto K; Morimoto T; Ishitani O J Am Chem Soc; 2010 Aug; 132(30):10547-52. PubMed ID: 20662527 [TBL] [Abstract][Full Text] [Related]
7. Unexpected effect of catalyst concentration on photochemical CO Kuramochi Y; Itabashi J; Fukaya K; Enomoto A; Yoshida M; Ishida H Chem Sci; 2015 May; 6(5):3063-3074. PubMed ID: 28706681 [TBL] [Abstract][Full Text] [Related]
8. Electronic and photophysical properties of adducts of [Ru(bpy)3]2+ and Dawson-type sulfite polyoxomolybdates α/β-[Mo18O54(SO3)2]4-. Walsh JJ; Long DL; Cronin L; Bond AM; Forster RJ; Keyes TE Dalton Trans; 2011 Mar; 40(9):2038-45. PubMed ID: 21258724 [TBL] [Abstract][Full Text] [Related]
9. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO Fujita E; Grills DC; Manbeck GF; Polyansky DE Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133 [TBL] [Abstract][Full Text] [Related]
10. Photocatalytic Conversion of CO Guo Z; Yu F; Yang Y; Leung CF; Ng SM; Ko CC; Cometto C; Lau TC; Robert M ChemSusChem; 2017 Oct; 10(20):4009-4013. PubMed ID: 28840967 [TBL] [Abstract][Full Text] [Related]
11. Electrochemiluminescence of dipicolinic acid (DPA) and (bpy)(2)Ru(DPA)(+) (bpy = 2,2'-bipyridine). Byrd J; Bruno JG; Richter MM Luminescence; 2006; 21(2):72-6. PubMed ID: 16211541 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic insights into electrocatalytic CO2 reduction within [Ru(II)(tpy)(NN)X]n+ architectures. White TA; Maji S; Ott S Dalton Trans; 2014 Oct; 43(40):15028-37. PubMed ID: 25072294 [TBL] [Abstract][Full Text] [Related]
14. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. Takeda H; Koike K; Inoue H; Ishitani O J Am Chem Soc; 2008 Feb; 130(6):2023-31. PubMed ID: 18205359 [TBL] [Abstract][Full Text] [Related]
15. trans-(Cl)-[Ru(5,5'-diamide-2,2'-bipyridine)(CO)2 Cl2 ]: Synthesis, Structure, and Photocatalytic CO2 Reduction Activity. Kuramochi Y; Fukaya K; Yoshida M; Ishida H Chemistry; 2015 Jul; 21(28):10049-60. PubMed ID: 26014896 [TBL] [Abstract][Full Text] [Related]
16. Photoinduced water oxidation by a tetraruthenium polyoxometalate catalyst: ion-pairing and primary processes with Ru(bpy)3(2+) photosensitizer. Natali M; Orlandi M; Berardi S; Campagna S; Bonchio M; Sartorel A; Scandola F Inorg Chem; 2012 Jul; 51(13):7324-31. PubMed ID: 22686248 [TBL] [Abstract][Full Text] [Related]
17. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Tamaki Y; Morimoto T; Koike K; Ishitani O Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15673-8. PubMed ID: 22908243 [TBL] [Abstract][Full Text] [Related]
18. High turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru, Rh, Ru photoinitiated electron collector. Arachchige SM; Shaw R; White TA; Shenoy V; Tsui HM; Brewer KJ ChemSusChem; 2011 Apr; 4(4):514-8. PubMed ID: 21438156 [TBL] [Abstract][Full Text] [Related]
19. Photochromic ruthenium sulfoxide complexes: evidence for isomerization through a conical intersection. McClure BA; Mockus NV; Butcher DP; Lutterman DA; Turro C; Petersen JL; Rack JJ Inorg Chem; 2009 Sep; 48(17):8084-91. PubMed ID: 19435341 [TBL] [Abstract][Full Text] [Related]
20. Photophysical properties of ruthenium(II) polypyridyl-gold(I) ethynyl dyads and triads containing mono- or diethynylphenanthroline incorporated into gold(I) triphenylphosphine organometallics. Shiotsuka M; Tsuji Y; Keyaki K; Nozaki K Inorg Chem; 2010 May; 49(9):4186-93. PubMed ID: 20364844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]