BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25199811)

  • 1. Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin.
    Wang P; He JY; Yin JF
    Bioprocess Biosyst Eng; 2015 Mar; 38(3):421-8. PubMed ID: 25199811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage cultivation of Pseudomonas sp. F12 for the production of enzymes converting DL-2-amino-Δ²-thiazoline-4-carboxylic acid to L-cysteine.
    Fan C; Li Z; Ye Q
    Appl Biochem Biotechnol; 2012 Dec; 168(7):1867-79. PubMed ID: 23054819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Carbamoyl-L-Cysteine as an Intermediate in the Bioconversion from D,L-2-Amino-Δ (2)-Thiazoline-4-Carboxylic Acid to L-Cysteine by Pseudomonas sp. ON-4a.
    Tamura Y; Nishino M; Ohmachi T; Asada Y
    Biosci Biotechnol Biochem; 1998; 62(11):2226-9. PubMed ID: 27393592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic synthesis oF L-tryptophan from D,L-2-amino-delta2-thiazoline-4-carboxylic acid and indole by Pseudomonas sp. TS1138 L-2-amino-delta2-thiazoline-4-carboxylic acid hydrolase, S-carbamyl-L-cysteine amidohydrolase, and Escherichia coli L-tryptophanase.
    Du J; Duan JJ; Zhang Q; Hou J; Bai F; Chen N; Bai G
    Prikl Biokhim Mikrobiol; 2012; 48(2):183-90. PubMed ID: 22586911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, expression, characterization and application of atcA, atcB and atcC from Pseudomonas sp. for the production of L-cysteine.
    Duan J; Zhang Q; Zhao H; Du J; Bai F; Bai G
    Biotechnol Lett; 2012 Jun; 34(6):1101-6. PubMed ID: 22350333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, expression, and identification of genes involved in the conversion of DL-2-amino-Delta2-thiazoline-4-carboxylic acid to L-cysteine via S-carbamyl-L-cysteine pathway in Pseudomonas sp. TS1138.
    Yu Y; Liu Z; Liu C; Li Y; Jin Y; Yang W; Bai G
    Biosci Biotechnol Biochem; 2006 Sep; 70(9):2262-7. PubMed ID: 16960371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of ε-poly-L-lysine by Streptomyces sp. using resin-based, in situ product removal.
    Liu S; Wu Q; Zhang J; Mo S
    Biotechnol Lett; 2011 Aug; 33(8):1581-5. PubMed ID: 21720848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and genetic improvement of Pseudomonas sp. strain HUT-78, capable of enzymatic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid.
    Yang B; Liu Z; Deng B; Zeng Y; Hu J; Li W; Hu Z
    J Gen Appl Microbiol; 2011; 57(6):379-86. PubMed ID: 22353743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial conversion of DL-2-amino-delta2-thiazoline-4-carboxylic acid to L-cysteine and L-cystine: screening of microorganisms and identification of products.
    Sano K; Yokozeki K; Tamura F; Yasuda N; Noda I; Mitsugi K
    Appl Environ Microbiol; 1977 Dec; 34(6):806-10. PubMed ID: 596877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins.
    Caetano M; Valderrama C; Farran A; Cortina JL
    J Colloid Interface Sci; 2009 Oct; 338(2):402-9. PubMed ID: 19679317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced vanillin production from ferulic acid using adsorbent resin.
    Hua D; Ma C; Song L; Lin S; Zhang Z; Deng Z; Xu P
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):783-90. PubMed ID: 17124580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient in situ separation and production of L-lactic acid by Bacillus coagulans using weak basic anion-exchange resin.
    Zhang Y; Qian Z; Liu P; Liu L; Zheng Z; Ouyang J
    Bioprocess Biosyst Eng; 2018 Feb; 41(2):205-212. PubMed ID: 29075891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of a novel L-2-amino-Delta2-thiazoline-4-carboxylic acid hydrolase from Pseudomonas sp. strain ON-4a expressed in E. coli.
    Tashima I; Yoshida T; Asada Y; Ohmachi T
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):499-507. PubMed ID: 16550379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced biotransformation of 1,3-dichloro-2-propanol to epichlorohydrin via resin-based in situ product removal process.
    Zou SP; Du EH; Hu ZC; Zheng YG
    Biotechnol Lett; 2013 Jun; 35(6):937-42. PubMed ID: 23430130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic pathways and biotechnological production of L-cysteine.
    Wada M; Takagi H
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):48-54. PubMed ID: 17021879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uranium removal from contaminated groundwater by synthetic resins.
    Phillips DH; Gu B; Watson DB; Parmele CS
    Water Res; 2008 Jan; 42(1-2):260-8. PubMed ID: 17697694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated process for the production of toxic catechols from toxic phenols based on a designer biocatalyst.
    Held M; Schmid A; Kohler HP; Suske W; Witholt B; Wubbolts MG
    Biotechnol Bioeng; 1999 Mar; 62(6):641-8. PubMed ID: 9951522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB.
    Barton CS; Stewart DI; Morris K; Bryant DE
    J Hazard Mater; 2004 Dec; 116(3):191-204. PubMed ID: 15601612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of aqueous cyanide with strongly basic ion-exchange resin.
    Simsek H; Kobya M; Khan E; Bezbaruah AN
    Environ Technol; 2015; 36(13-16):1612-22. PubMed ID: 25558868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and quality assessment of high-purity ginseng total saponins by ion exchange resin combined with macroporous adsorption resin separation.
    Zhao YN; Wang ZL; Dai JG; Chen L; Huang YF
    Chin J Nat Med; 2014 May; 12(5):382-92. PubMed ID: 24856763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.