These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 25199941)

  • 1. Use it or lose it: multiscale skeletal muscle adaptation to mechanical stimuli.
    Wisdom KM; Delp SL; Kuhl E
    Biomech Model Mechanobiol; 2015 Apr; 14(2):195-215. PubMed ID: 25199941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect.
    Hyldahl RD; Chen TC; Nosaka K
    Exerc Sport Sci Rev; 2017 Jan; 45(1):24-33. PubMed ID: 27782911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading.
    Kjaer M
    Physiol Rev; 2004 Apr; 84(2):649-98. PubMed ID: 15044685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload.
    Goldspink G
    J Anat; 1999 Apr; 194 ( Pt 3)(Pt 3):323-34. PubMed ID: 10386770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle: A review of molecular structure and function, in health and disease.
    Mukund K; Subramaniam S
    Wiley Interdiscip Rev Syst Biol Med; 2020 Jan; 12(1):e1462. PubMed ID: 31407867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling extracellular matrix and cellular contributions to whole muscle mechanics.
    Konno RN; Nigam N; Wakeling JM
    PLoS One; 2021; 16(4):e0249601. PubMed ID: 33798249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of muscle size and myofascial force transmission: a review and some new experimental results.
    Huijing PA; Jaspers RT
    Scand J Med Sci Sports; 2005 Dec; 15(6):349-80. PubMed ID: 16293149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale modeling of the neuromuscular system: Coupling neurophysiology and skeletal muscle mechanics.
    Röhrle O; Yavuz UŞ; Klotz T; Negro F; Heidlauf T
    Wiley Interdiscip Rev Syst Biol Med; 2019 Nov; 11(6):e1457. PubMed ID: 31237041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.
    Zöllner AM; Abilez OJ; Böl M; Kuhl E
    PLoS One; 2012; 7(10):e45661. PubMed ID: 23049683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle excursion does not correlate with increased serial sarcomere number after muscle adaptation to stretched tendon transfer.
    Takahashi M; Ward SR; Fridén J; Lieber RL
    J Orthop Res; 2012 Nov; 30(11):1774-80. PubMed ID: 22532301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle adaptation in response to mechanical stress in p130cas-/- mice.
    Akimoto T; Okuhira K; Aizawa K; Wada S; Honda H; Fukubayashi T; Ushida T
    Am J Physiol Cell Physiol; 2013 Mar; 304(6):C541-7. PubMed ID: 23325412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of the direction-dependent mechanical behaviour of skeletal muscle extracellular matrix.
    Kohn S; Leichsenring K; Kuravi R; Ehret AE; Böl M
    Acta Biomater; 2021 Mar; 122():249-262. PubMed ID: 33444799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular matrix adaptation of tendon and skeletal muscle to exercise.
    Kjaer M; Magnusson P; Krogsgaard M; Boysen Møller J; Olesen J; Heinemeier K; Hansen M; Haraldsson B; Koskinen S; Esmarck B; Langberg H
    J Anat; 2006 Apr; 208(4):445-50. PubMed ID: 16637870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible stimuli for strength and power adaptation: acute mechanical responses.
    Crewther B; Cronin J; Keogh J
    Sports Med; 2005; 35(11):967-89. PubMed ID: 16271010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats.
    Gao Y; Kostrominova TY; Faulkner JA; Wineman AS
    J Biomech; 2008; 41(2):465-9. PubMed ID: 18031752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging.
    Kragstrup TW; Kjaer M; Mackey AL
    Scand J Med Sci Sports; 2011 Dec; 21(6):749-57. PubMed ID: 22092924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural analysis of skeletal muscle force generation during aging.
    Zhang Y; Chen JS; He Q; He X; Basava RR; Hodgson J; Sinha U; Sinha S
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3295. PubMed ID: 31820588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle growth across a variety of exercise modalities and intensities: Contributions of mechanical and metabolic stimuli.
    Ozaki H; Loenneke JP; Buckner SL; Abe T
    Med Hypotheses; 2016 Mar; 88():22-6. PubMed ID: 26880629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals.
    Mohr T; Andersen JL; Biering-Sørensen F; Galbo H; Bangsbo J; Wagner A; Kjaer M
    Spinal Cord; 1997 Jan; 35(1):1-16. PubMed ID: 9025213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of skeletal muscle plasticity--from gene to form and function.
    Flück M; Hoppeler H
    Rev Physiol Biochem Pharmacol; 2003; 146():159-216. PubMed ID: 12605307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.