These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25200295)

  • 1. Brain amino acid sensing.
    Tsurugizawa T; Uneyama H; Torii K
    Diabetes Obes Metab; 2014 Sep; 16 Suppl 1():41-8. PubMed ID: 25200295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypothalamic control of amino acid appetite.
    Torii K; Kondoh T; Mori M; Ono T
    Ann N Y Acad Sci; 1998 Nov; 855():417-25. PubMed ID: 9929635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption.
    Torii K; Uneyama H; Nakamura E
    J Gastroenterol; 2013 Apr; 48(4):442-51. PubMed ID: 23463402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid and NaCl appetite, and LHA neuron responses of lysine-deficient rat.
    Tabuchi E; Ono T; Nishijo H; Torii K
    Physiol Behav; 1991 May; 49(5):951-64. PubMed ID: 1909441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of inhibin, follistatin, or activin infusion into the lateral hypothalamus on operant behavior of rats fed lysine deficient diet.
    Hawkins RL; Inoue M; Mori M; Torii K
    Brain Res; 1995 Dec; 704(1):1-9. PubMed ID: 8750955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition and neural plasticity responding to deficient nutrient intake scanned by a functional MRI in the brain of rats with L-lysine deficiency.
    Yokawa T; Tabuchi E; Takezawa M; Ono T; Torii K
    Obes Res; 1995 Dec; 3 Suppl 5():685S-688S. PubMed ID: 8653549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain functional changes in rats administered with monosodium L-glutamate in the stomach.
    Kondoh T; Tsurugizawa T; Torii K
    Ann N Y Acad Sci; 2009 Jul; 1170():77-81. PubMed ID: 19686112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and pathophysiological implications of lipid sensing in the brain.
    Picard A; Moullé VS; Le Foll C; Cansell C; Véret J; Coant N; Le Stunff H; Migrenne S; Luquet S; Cruciani-Guglielmacci C; Levin BE; Magnan C
    Diabetes Obes Metab; 2014 Sep; 16 Suppl 1():49-55. PubMed ID: 25200296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite.
    Hermanussen M; García AP; Sunder M; Voigt M; Salazar V; Tresguerres JA
    Eur J Clin Nutr; 2006 Jan; 60(1):25-31. PubMed ID: 16132059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activin A: serum levels and immunohistochemical brain localization in rats given diets deficient in L-lysine or protein.
    Torii K; Hanai K; Oosawa K; Funaba M; Okiyama A; Mori M; Murata T; Takahashi M
    Physiol Behav; 1993 Sep; 54(3):459-66. PubMed ID: 8415938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSG intake suppresses weight gain, fat deposition, and plasma leptin levels in male Sprague-Dawley rats.
    Kondoh T; Torii K
    Physiol Behav; 2008 Sep; 95(1-2):135-44. PubMed ID: 18559279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nesfatin-1 influences the excitability of glucosensing neurons in the hypothalamic nuclei and inhibits the food intake.
    Chen X; Dong J; Jiang ZY
    Regul Pept; 2012 Aug; 177(1-3):21-6. PubMed ID: 22561448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral dopaminergic lesions in the ventral tegmental area of rats influence sucrose intake, but not umami and amino acid intake.
    Shibata R; Kameishi M; Kondoh T; Torii K
    Physiol Behav; 2009 Mar; 96(4-5):667-74. PubMed ID: 19174174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological significance of glutamate signaling during digestion of food through the gut-brain axis.
    Kitamura A; Tsurugizawa T; Torii K
    Digestion; 2011; 83 Suppl 1():37-43. PubMed ID: 21389727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taste preference and protein nutrition and L-amino acid homeostasis in male Sprague-Dawley rats.
    Mori M; Kawada T; Ono T; Torii K
    Physiol Behav; 1991 May; 49(5):987-95. PubMed ID: 1653438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferable Monosodium Glutamate and Sodium Chloride Solutions do not Affect Diurnal Norepinephrine Release in the Rat Lateral Hypothalamus.
    Smriga M; Torii K
    Nutr Neurosci; 2000; 3(5):367-72. PubMed ID: 27414135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digestive physiology of the pig symposium: detection of dietary glutamate via gut-brain axis.
    Bannai M; Torii K
    J Anim Sci; 2013 May; 91(5):1974-81. PubMed ID: 23345555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvements of the lateral hypothalamic area in gastric motility and its regulation by the lateral septum.
    Gong Y; Xu L; Wang H; Guo F; Sun X; Gao S
    Gen Comp Endocrinol; 2013 Dec; 194():275-85. PubMed ID: 24100167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral hypothalamic serotonergic responsiveness to food intake in rat obesity as measured by microdialysis.
    Mori RC; Guimarães RB; Nascimento CM; Ribeiro EB
    Can J Physiol Pharmacol; 1999 Apr; 77(4):286-92. PubMed ID: 10535677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA receptor function within the anterior piriform cortex and lateral hypothalamus in rats on the control of intake of amino acid-deficient diets.
    Blevins JE; Truong BG; Gietzen DW
    Brain Res; 2004 Sep; 1019(1-2):124-33. PubMed ID: 15306246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.