These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 25200459)

  • 1. Nanostructured Mn-based oxides for electrochemical energy storage and conversion.
    Zhang K; Han X; Hu Z; Zhang X; Tao Z; Chen J
    Chem Soc Rev; 2015 Feb; 44(3):699-728. PubMed ID: 25200459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured Mo-based electrode materials for electrochemical energy storage.
    Hu X; Zhang W; Liu X; Mei Y; Huang Y
    Chem Soc Rev; 2015 Apr; 44(8):2376-404. PubMed ID: 25688809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.
    Park MS; Kim J; Kim KJ; Lee JW; Kim JH; Yamauchi Y
    Phys Chem Chem Phys; 2015 Dec; 17(46):30963-77. PubMed ID: 26549729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed transition-metal oxides: design, synthesis, and energy-related applications.
    Yuan C; Wu HB; Xie Y; Lou XW
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1488-504. PubMed ID: 24382683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterials for energy conversion and storage.
    Zhang Q; Uchaker E; Candelaria SL; Cao G
    Chem Soc Rev; 2013 Apr; 42(7):3127-71. PubMed ID: 23455759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.
    Yan L; Rui X; Chen G; Xu W; Zou G; Luo H
    Nanoscale; 2016 Apr; 8(16):8443-65. PubMed ID: 27074412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Li3PO4-coated LiNi0.5Mn1.5O4: a stable high-voltage cathode material for lithium-ion batteries.
    Chong J; Xun S; Zhang J; Song X; Xie H; Battaglia V; Wang R
    Chemistry; 2014 Jun; 20(24):7479-85. PubMed ID: 24782138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured electrodes for high-performance pseudocapacitors.
    Lu Q; Chen JG; Xiao JQ
    Angew Chem Int Ed Engl; 2013 Feb; 52(7):1882-9. PubMed ID: 23307657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices.
    Gao MR; Xu YF; Jiang J; Yu SH
    Chem Soc Rev; 2013 Apr; 42(7):2986-3017. PubMed ID: 23296312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries.
    Tang X; Jan SS; Qian Y; Xia H; Ni J; Savilov SV; Aldoshin SM
    Sci Rep; 2015 Jul; 5():11958. PubMed ID: 26148558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.
    Wang ZL; Xu D; Xu JJ; Zhang XB
    Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.
    Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.
    Zheng J; Xiao J; Yu X; Kovarik L; Gu M; Omenya F; Chen X; Yang XQ; Liu J; Graff GL; Whittingham MS; Zhang JG
    Phys Chem Chem Phys; 2012 Oct; 14(39):13515-21. PubMed ID: 22968196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.
    Patil U; Lee SC; Kulkarni S; Sohn JS; Nam MS; Han S; Jun SC
    Nanoscale; 2015 Apr; 7(16):6999-7021. PubMed ID: 25807279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Li storage performance of LiNi(0.5)Mn(1.5)O(4)-coated 0.4Li(2)MnO(3)·0.6LiNi(1/3)Co(1/3)Mn(1/3)O(2) cathode materials for li-ion batteries.
    Chen Y; Xie K; Zheng C; Ma Z; Chen Z
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16888-94. PubMed ID: 25225881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.