BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25200493)

  • 21. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.
    Wang SH; Cheng CY; Tang PC; Chen CF; Chen HH; Lee YP; Huang SY
    Theriogenology; 2013 Jan; 79(2):374-82.e1-7. PubMed ID: 23154143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of heat stress responsive gene expression levels for early selection of heat tolerant cabbage (Brassica oleracea L.).
    Park HJ; Jung WY; Lee SS; Song JH; Kwon SY; Kim H; Kim C; Ahn JC; Cho HS
    Int J Mol Sci; 2013 Jun; 14(6):11871-94. PubMed ID: 23736694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome Analyses Provide Novel Insights into Heat Stress Responses in Chieh-Qua (
    Wang M; Jiang B; Liu W; Lin Y; Liang Z; He X; Peng Q
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome-Wide Identification and Expression Profiling Analysis of Chrysanthemum Trihelix Transcription Factors.
    Song A; Wu D; Fan Q; Tian C; Chen S; Guan Z; Xin J; Zhao K; Chen F
    Int J Mol Sci; 2016 Feb; 17(2):. PubMed ID: 26848650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome profiling and gene expression analyses of eggplant (Solanum melongena L.) under heat stress.
    Zhang A; Zhu Z; Shang J; Zhang S; Shen H; Wu X; Zha D
    PLoS One; 2020; 15(8):e0236980. PubMed ID: 32780737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological and transcriptomic analyses provide insight into thermotolerance in desert plant Zygophyllum xanthoxylum.
    Bai WP; Li HJ; Hepworth SR; Liu HS; Liu LB; Wang GN; Ma Q; Bao AK; Wang SM
    BMC Plant Biol; 2023 Jan; 23(1):7. PubMed ID: 36600201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative transcriptomic analysis of the heat stress response in the filamentous fungus Metarhizium anisopliae using RNA-Seq.
    Wang ZX; Zhou XZ; Meng HM; Liu YJ; Zhou Q; Huang B
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5589-97. PubMed ID: 24769907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat stress-dependent DNA binding of Arabidopsis heat shock transcription factor HSF1 to heat shock gene promoters in Arabidopsis suspension culture cells in vivo.
    Zhang L; Lohmann C; Prändl R; Schöffl F
    Biol Chem; 2003 Jun; 384(6):959-63. PubMed ID: 12887064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome Profiling of Clematis apiifolia: Insights into Heat-Stress Responses.
    Gao L; Ma Y; Wang P; Wang S; Yang R; Wang Q; Li L; Li Y
    DNA Cell Biol; 2017 Nov; 36(11):938-946. PubMed ID: 28945464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium).
    Xia X; Shao Y; Jiang J; Ren L; Chen F; Fang W; Guan Z; Chen S
    BMC Genomics; 2014 Dec; 15(1):1050. PubMed ID: 25466867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early molecular responses of coral larvae to hyperthermal stress.
    Rodriguez-Lanetty M; Harii S; Hoegh-Guldberg O
    Mol Ecol; 2009 Dec; 18(24):5101-14. PubMed ID: 19900172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An RNA sequencing transcriptome analysis of the high-temperature stressed tall fescue reveals novel insights into plant thermotolerance.
    Hu T; Sun X; Zhang X; Nevo E; Fu J
    BMC Genomics; 2014 Dec; 15(1):1147. PubMed ID: 25527327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress.
    Liu GT; Wang JF; Cramer G; Dai ZW; Duan W; Xu HG; Wu BH; Fan PG; Wang LJ; Li SH
    BMC Plant Biol; 2012 Sep; 12():174. PubMed ID: 23016701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptome analysis of the role of autophagy in plant response to heat stress.
    Zhang Y; Min H; Shi C; Xia G; Lai Z
    PLoS One; 2021; 16(2):e0247783. PubMed ID: 33635879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA-Seq analysis of the multipartite genome of Rhizobium etli CE3 shows different replicon contributions under heat and saline shock.
    López-Leal G; Tabche ML; Castillo-Ramírez S; Mendoza-Vargas A; Ramírez-Romero MA; Dávila G
    BMC Genomics; 2014 Sep; 15(1):770. PubMed ID: 25201548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1.
    Neal SJ; Karunanithi S; Best A; So AK; Tanguay RM; Atwood HL; Westwood JT
    Physiol Genomics; 2006 May; 25(3):493-501. PubMed ID: 16595740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of chrysanthemum flowers grown under hydroponic and soil-based systems: yield and transcriptome analysis.
    Ai P; Liu X; Li Z; Kang D; Khan MA; Li H; Shi M; Wang Z
    BMC Plant Biol; 2021 Nov; 21(1):517. PubMed ID: 34749661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf.
    Zhang X; Rerksiri W; Liu A; Zhou X; Xiong H; Xiang J; Chen X; Xiong X
    Gene; 2013 Nov; 530(2):185-92. PubMed ID: 23994682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA-seq based transcriptional analysis reveals dynamic genes expression profiles and immune-associated regulation under heat stress in Apostichopus japonicus.
    Xu D; Zhou S; Sun L
    Fish Shellfish Immunol; 2018 Jul; 78():169-176. PubMed ID: 29684611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.