These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 25200657)
1. Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells. Dong W; Zhang P; Fu Y; Ge J; Cheng J; Yuan H; Jiang H J Cell Physiol; 2015 Mar; 230(3):680-90. PubMed ID: 25200657 [TBL] [Abstract][Full Text] [Related]
2. SATB2-Nanog axis links age-related intrinsic changes of mesenchymal stem cells from craniofacial bone. Zhou P; Wu G; Zhang P; Xu R; Ge J; Fu Y; Zhang Y; Du Y; Ye J; Cheng J; Jiang H Aging (Albany NY); 2016 Sep; 8(9):2006-2011. PubMed ID: 27632702 [TBL] [Abstract][Full Text] [Related]
3. Contribution of SATB2 to the stronger osteogenic potential of bone marrow stromal cells from craniofacial bones. Zhang P; Men J; Fu Y; Shan T; Ye J; Wu Y; Tao Z; Liu L; Jiang H Cell Tissue Res; 2012 Dec; 350(3):425-37. PubMed ID: 22955562 [TBL] [Abstract][Full Text] [Related]
4. Transplantation of osteoporotic bone marrow stromal cells rejuvenated by the overexpression of SATB2 prevents alveolar bone loss in ovariectomized rats. Xu R; Fu Z; Liu X; Xiao T; Zhang P; Du Y; Yuan H; Cheng J; Jiang H Exp Gerontol; 2016 Nov; 84():71-79. PubMed ID: 27599698 [TBL] [Abstract][Full Text] [Related]
5. Estrogen regulates stemness and senescence of bone marrow stromal cells to prevent osteoporosis via ERĪ²-SATB2 pathway. Wu G; Xu R; Zhang P; Xiao T; Fu Y; Zhang Y; Du Y; Ye J; Cheng J; Jiang H J Cell Physiol; 2018 May; 233(5):4194-4204. PubMed ID: 29030963 [TBL] [Abstract][Full Text] [Related]
6. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Deng Y; Wu S; Zhou H; Bi X; Wang Y; Hu Y; Gu P; Fan X Stem Cells Dev; 2013 Aug; 22(16):2278-86. PubMed ID: 23517179 [TBL] [Abstract][Full Text] [Related]
7. Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo. Gong Y; Qian Y; Yang F; Wang H; Yu Y Eur J Oral Sci; 2014 Jun; 122(3):190-7. PubMed ID: 24666017 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic characterization of craniofacial bone marrow stromal cells: unique properties of enhanced osteogenesis, cell recruitment, autophagy, and apoptosis resistance. Dong W; Ge J; Zhang P; Fu Y; Zhang Z; Cheng J; Jiang H Cell Tissue Res; 2014 Oct; 358(1):165-75. PubMed ID: 24927919 [TBL] [Abstract][Full Text] [Related]
9. Regulative Effect of Mir-205 on Osteogenic Differentiation of Bone Mesenchymal Stem Cells (BMSCs): Possible Role of SATB2/Runx2 and ERK/MAPK Pathway. Hu N; Feng C; Jiang Y; Miao Q; Liu H Int J Mol Sci; 2015 May; 16(5):10491-506. PubMed ID: 25961955 [TBL] [Abstract][Full Text] [Related]
10. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. Guang LG; Boskey AL; Zhu W Int J Biochem Cell Biol; 2013 Aug; 45(8):1813-20. PubMed ID: 23742988 [TBL] [Abstract][Full Text] [Related]
11. Similarities and differences between porcine mandibular and limb bone marrow mesenchymal stem cells. Lloyd B; Tee BC; Headley C; Emam H; Mallery S; Sun Z Arch Oral Biol; 2017 May; 77():1-11. PubMed ID: 28135571 [TBL] [Abstract][Full Text] [Related]
12. Expression of Sp7 in Satb2-induced osteogenic differentiation of mouse bone marrow stromal cells is regulated by microRNA-27a. Gong Y; Lu J; Yu X; Yu Y Mol Cell Biochem; 2016 Jun; 417(1-2):7-16. PubMed ID: 27142530 [TBL] [Abstract][Full Text] [Related]
13. Transcription factor and bone marrow stromal cells in osseointegration of dental implants. Yan SG; Zhang J; Tu Q; Ye JH; Luo E; Schuler M; Dard MM; Yu Y; Murray D; Cochran DL; Kim SH; Yang P; Chen J Eur Cell Mater; 2013 Dec; 26():263-70; discussion 270-1. PubMed ID: 24352891 [TBL] [Abstract][Full Text] [Related]
14. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing. Han Q; Yang P; Wu Y; Meng S; Sui L; Zhang L; Yu L; Tang Y; Jiang H; Xuan D; Kaplan DL; Kim SH; Tu Q; Chen J Tissue Eng Part A; 2015 Aug; 21(15-16):2156-65. PubMed ID: 25923143 [TBL] [Abstract][Full Text] [Related]
15. Roles of SATB2 in osteogenic differentiation and bone regeneration. Zhang J; Tu Q; Grosschedl R; Kim MS; Griffin T; Drissi H; Yang P; Chen J Tissue Eng Part A; 2011 Jul; 17(13-14):1767-76. PubMed ID: 21385070 [TBL] [Abstract][Full Text] [Related]
16. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Eom YW; Oh JE; Lee JI; Baik SK; Rhee KJ; Shin HC; Kim YM; Ahn CM; Kong JH; Kim HS; Shim KY Biochem Biophys Res Commun; 2014 Feb; 445(1):16-22. PubMed ID: 24491556 [TBL] [Abstract][Full Text] [Related]
17. Role of Special AT-Rich Sequence-Binding Protein 2 in the Osteogenesis of Human Dental Mesenchymal Stem Cells. Cheng Q; Lin J; Chen Q; Zheng L; Tang Y; Wang F; Huang X; Zhang Y; Li S; Yang Z; Zhou P; He TC; Luo W; Zhang H Stem Cells Dev; 2020 Aug; 29(16):1059-1072. PubMed ID: 32484035 [TBL] [Abstract][Full Text] [Related]
18. MiR-1301 promotes adipogenic and osteogenic differentiation of BMSCs by targeting Satb2. Kong J; Wan LP; Liu ZM; Gao ST Eur Rev Med Pharmacol Sci; 2020 Apr; 24(7):3501-3508. PubMed ID: 32329823 [TBL] [Abstract][Full Text] [Related]
19. [Role of transcription factor special AT-rich binding protein 2 in the osteoblasts differentiation of bone marrow stromal cells]. Wang Q; Yu YC; Gu ZY; Bi W; Sun J Zhonghua Kou Qiang Yi Xue Za Zhi; 2011 Jun; 46(6):360-4. PubMed ID: 21914381 [TBL] [Abstract][Full Text] [Related]
20. Role of SATB2 in human pancreatic cancer: Implications in transformation and a promising biomarker. Yu W; Ma Y; Shankar S; Srivastava RK Oncotarget; 2016 Sep; 7(36):57783-57797. PubMed ID: 27472393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]