These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 25200700)

  • 1. Effect of carrier and particle concentration on ultrasound properties of magnetic nanofluids.
    Patel JK; Parekh K
    Ultrasonics; 2015 Jan; 55():26-32. PubMed ID: 25200700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic propagation: a technique to reveal field induced structures in magnetic nanofluids.
    Parekh K; Patel J; Upadhyay RV
    Ultrasonics; 2015 Jul; 60():126-32. PubMed ID: 25791205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of particle clustering on the rheological properties of highly concentrated magnetic nanofluids.
    Susan-Resiga D; Socoliuc V; Boros T; Borbáth T; Marinica O; Han A; Vékás L
    J Colloid Interface Sci; 2012 May; 373(1):110-5. PubMed ID: 22134213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid.
    Nabeel Rashin M; Hemalatha J
    Ultrasonics; 2014 Mar; 54(3):834-40. PubMed ID: 24188514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing of field-induced structures and tunable rheological properties of surfactant capped magnetically polarizable nanofluids.
    Felicia LJ; Philip J
    Langmuir; 2013 Jan; 29(1):110-20. PubMed ID: 23210900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective viscosity of magnetic nanofluids through capillaries.
    Patel R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026316. PubMed ID: 22463326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental measurements of ultrasonic propagation velocity and attenuation in a magnetic fluid.
    Motozawa M; Iizuka Y; Sawada T
    J Phys Condens Matter; 2008 May; 20(20):204117. PubMed ID: 21694246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid).
    Amrollahi A; Hamidi AA; Rashidi AM
    Nanotechnology; 2008 Aug; 19(31):315701. PubMed ID: 21828793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic and ultrasonic investigations on magnetite nanofluids.
    Nabeel Rashin M; Hemalatha J
    Ultrasonics; 2012 Dec; 52(8):1024-9. PubMed ID: 22939116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial interaction-driven rheological properties of quartz nanofluids from molecular dynamics simulations and density functional theory calculations.
    Lou Z; Cheng C; Cui Y; Tian H
    J Mol Model; 2022 Jun; 28(7):189. PubMed ID: 35708874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.
    Timofeeva EV; Smith DS; Yu W; France DM; Singh D; Routbort JL
    Nanotechnology; 2010 May; 21(21):215703. PubMed ID: 20431197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport properties of alumina nanofluids.
    Wong KF; Kurma T
    Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining rheological behavior of CeO
    Sepehrnia M; Maleki H; Karimi M; Nabati E
    Sci Rep; 2022 Dec; 12(1):22054. PubMed ID: 36543900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Experimental Study on the Rheological Behavior of Carbon Black-Boron Nitride Hybrid Nanofluids and Development of a New Correlation.
    Michael M; Zagabathuni A; Kumar Pabi S; Ghosh S
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3283-3290. PubMed ID: 34739783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for enhanced thermal conduction through percolating structures in nanofluids.
    Philip J; Shima PD; Raj B
    Nanotechnology; 2008 Jul; 19(30):305706. PubMed ID: 21828773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dipolar Interaction and Magneto-Viscoelasticity in Nanomagnetic Fluid.
    Basheed GA; Jain K; Pathak S; Pant RP
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2746-2751. PubMed ID: 29442952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic propagation velocity in magnetic and magnetorheological fluids due to an external magnetic field.
    Bramantya MA; Motozawa M; Sawada T
    J Phys Condens Matter; 2010 Aug; 22(32):324102. PubMed ID: 21386478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical properties of dilute hematite/silicone oil suspensions under low electric fields.
    Espin MJ; Delgado AV; Durán JD
    J Colloid Interface Sci; 2005 Jul; 287(1):351-9. PubMed ID: 15914184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic spreading of nanofluids on solids. Part I: experimental.
    Kondiparty K; Nikolov AD; Wasan D; Liu KL
    Langmuir; 2012 Oct; 28(41):14618-23. PubMed ID: 22966990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Flocculation on the Propagation of Ultrasound in Dilute Kaolin Slurries.
    Austin JC; Challis RE
    J Colloid Interface Sci; 1998 Oct; 206(1):146-157. PubMed ID: 9761638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.