BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25200843)

  • 21. Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields.
    Chen S; Hirota N; Okuda M; Takeguchi M; Kobayashi H; Hanagata N; Ikoma T
    Acta Biomater; 2011 Feb; 7(2):644-52. PubMed ID: 20851220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Online monitoring of the mechanical behavior of collagen hydrogels: influence of corneal fibroblasts on elastic modulus.
    Ahearne M; Liu KK; El Haj AJ; Then KY; Rauz S; Yang Y
    Tissue Eng Part C Methods; 2010 Apr; 16(2):319-27. PubMed ID: 19563255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing the stiffness of collagen hydrogels for delivery of encapsulated chondrocytes to articular lesions for cartilage regeneration.
    Omobono MA; Zhao X; Furlong MA; Kwon CH; Gill TJ; Randolph MA; Redmond RW
    J Biomed Mater Res A; 2015 Apr; 103(4):1332-8. PubMed ID: 25044419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of matrix characteristics on fibroblast proliferation in 3D gels.
    Bott K; Upton Z; Schrobback K; Ehrbar M; Hubbell JA; Lutolf MP; Rizzi SC
    Biomaterials; 2010 Nov; 31(32):8454-64. PubMed ID: 20684983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration.
    Balakrishnan B; Joshi N; Jayakrishnan A; Banerjee R
    Acta Biomater; 2014 Aug; 10(8):3650-63. PubMed ID: 24811827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of crosslinking on the stiffness and degradation of dermis-derived hydrogels.
    Pilipchuk SP; Vaicik MK; Larson JC; Gazyakan E; Cheng MH; Brey EM
    J Biomed Mater Res A; 2013 Oct; 101(10):2883-95. PubMed ID: 23505054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro.
    Annabi N; Mithieux SM; Boughton EA; Ruys AJ; Weiss AS; Dehghani F
    Biomaterials; 2009 Sep; 30(27):4550-7. PubMed ID: 19500832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell encapsulation in a magnetically aligned collagen-GAG copolymer microenvironment.
    Novak T; Voytik-Harbin SL; Neu CP
    Acta Biomater; 2015 Jan; 11():274-82. PubMed ID: 25257315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological properties of crosslinked salmon collagen fibrillar gel as a scaffold for human umbilical vein endothelial cells.
    Nagai N; Mori K; Munekata M
    J Biomater Appl; 2008 Nov; 23(3):275-87. PubMed ID: 18697879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biopolymeric hydrogels - nanostructured TiO
    Zazakowny K; Lewandowska-Łańcucka J; Mastalska-Popławska J; Kamiński K; Kusior A; Radecka M; Nowakowska M
    Colloids Surf B Biointerfaces; 2016 Dec; 148():607-614. PubMed ID: 27694050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies.
    Mercuri JJ; Patnaik S; Dion G; Gill SS; Liao J; Simionescu DT
    Tissue Eng Part A; 2013 Apr; 19(7-8):952-66. PubMed ID: 23140227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocompatibility of NDGA-polymerized collagen fibers. II. Attachment, proliferation, and migration of tendon fibroblasts in vitro.
    Koob TJ; Willis TA; Qiu YS; Hernandez DJ
    J Biomed Mater Res; 2001 Jul; 56(1):40-8. PubMed ID: 11309789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymatically cross-linked hyperbranched polyglycerol hydrogels as scaffolds for living cells.
    Wu C; Strehmel C; Achazi K; Chiappisi L; Dernedde J; Lensen MC; Gradzielski M; Ansorge-Schumacher MB; Haag R
    Biomacromolecules; 2014 Nov; 15(11):3881-90. PubMed ID: 25144348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers.
    Ahn JI; Kuffova L; Merrett K; Mitra D; Forrester JV; Li F; Griffith M
    Acta Biomater; 2013 Aug; 9(8):7796-805. PubMed ID: 23619290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices.
    Wachiralarpphaithoon C; Iwasaki Y; Akiyoshi K
    Biomaterials; 2007 Feb; 28(6):984-93. PubMed ID: 17107708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Injectable carboxymethylcellulose hydrogels for soft tissue filler applications.
    Varma DM; Gold GT; Taub PJ; Nicoll SB
    Acta Biomater; 2014 Dec; 10(12):4996-5004. PubMed ID: 25152355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential soft tissue engineering applications.
    Latifi N; Asgari M; Vali H; Mongeau L
    Sci Rep; 2018 Jan; 8(1):1047. PubMed ID: 29348423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels.
    Jin R; Moreira Teixeira LS; Dijkstra PJ; van Blitterswijk CA; Karperien M; Feijen J
    J Control Release; 2011 May; 152(1):186-95. PubMed ID: 21291927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chitosan/alginate crosslinked hydrogels: preparation, characterization and application for cell growth purposes.
    Baysal K; Aroguz AZ; Adiguzel Z; Baysal BM
    Int J Biol Macromol; 2013 Aug; 59():342-8. PubMed ID: 23664939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modular enzymatically crosslinked protein polymer hydrogels for in situ gelation.
    Davis NE; Ding S; Forster RE; Pinkas DM; Barron AE
    Biomaterials; 2010 Oct; 31(28):7288-97. PubMed ID: 20609472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.