BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 25201269)

  • 1. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure.
    Zhu G; Yi Y; Han Z; Wang K; Wu X
    Anal Chim Acta; 2014 Oct; 845():30-7. PubMed ID: 25201269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of short graphene oxide nanoribbons for improved biomarker detection of Parkinson's disease.
    Sun CL; Su CH; Wu JJ
    Biosens Bioelectron; 2015 May; 67():327-33. PubMed ID: 25201013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid.
    Sun CL; Chang CT; Lee HH; Zhou J; Wang J; Sham TK; Pong WF
    ACS Nano; 2011 Oct; 5(10):7788-95. PubMed ID: 21910421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of azithromycin.
    Zhang K; Lu L; Wen Y; Xu J; Duan X; Zhang L; Hu D; Nie T
    Anal Chim Acta; 2013 Jul; 787():50-6. PubMed ID: 23830420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MIPs-graphene nanoplatelets-MWCNTs modified glassy carbon electrode for the determination of cardiac troponin I.
    Ma Y; Shen XL; Wang HS; Tao J; Huang JZ; Zeng Q; Wang LS
    Anal Biochem; 2017 Mar; 520():9-15. PubMed ID: 28024754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Growth of Metal-Organic Framework HKUST-1 on Graphene Oxide Nanoribbons with High Electrochemical Sensing Performance in Imatinib Determination.
    Rezvani Jalal N; Madrakian T; Afkhami A; Ghoorchian A
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4859-4869. PubMed ID: 31908170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems.
    Huang YX; Liu XW; Xie JF; Sheng GP; Wang GY; Zhang YY; Xu AW; Yu HQ
    Chem Commun (Camb); 2011 May; 47(20):5795-7. PubMed ID: 21494723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone.
    Shahrokhian S; Naderi L; Ghalkhani M
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():842-50. PubMed ID: 26838915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets.
    Chng EL; Chua CK; Pumera M
    Nanoscale; 2014 Sep; 6(18):10792-7. PubMed ID: 25104246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent "on-off-on" switching sensor based on CdTe quantum dots coupled with multiwalled carbon nanotubes@graphene oxide nanoribbons for simultaneous monitoring of dual foreign DNAs in transgenic soybean.
    Li Y; Sun L; Qian J; Long L; Li H; Liu Q; Cai J; Wang K
    Biosens Bioelectron; 2017 Jun; 92():26-32. PubMed ID: 28182975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode.
    Cheemalapati S; Palanisamy S; Mani V; Chen SM
    Talanta; 2013 Dec; 117():297-304. PubMed ID: 24209344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly-sensitive and selective determination of bisphenol A in milk samples based on self-assembled graphene nanoplatelets-multiwalled carbon nanotube-chitosan nanostructure.
    Zou J; Yuan MM; Huang ZN; Chen XQ; Jiang XY; Jiao FP; Zhou N; Zhou Z; Yu JG
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109848. PubMed ID: 31349437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-Cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3,4,9,10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid.
    Zhu G; Zhang X; Gai P; Zhang X; Chen J
    Nanoscale; 2012 Sep; 4(18):5703-9. PubMed ID: 22886354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation.
    Oh JW; Yoon YW; Heo J; Yu J; Kim H; Kim TH
    Talanta; 2016 Jan; 147():453-9. PubMed ID: 26592632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.
    Yang L; Yang J; Xu B; Zhao F; Zeng B
    Talanta; 2016 Dec; 161():413-418. PubMed ID: 27769426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of 8-Hydroxydeoxyguanosine: A potential biomarker of oxidative stress, using carbon-allotropic nanomaterials modified glassy carbon sensor.
    Rosy ; Goyal RN
    Talanta; 2016 Dec; 161():735-742. PubMed ID: 27769474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A graphene nanoribbon network and its biosensing application.
    Dong X; Long Q; Wang J; Chan-Park MB; Huang Y; Huang W; Chen P
    Nanoscale; 2011 Dec; 3(12):5156-60. PubMed ID: 22057304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs.
    Benvidi A; Tezerjani MD; Jahanbani S; Mazloum Ardakani M; Moshtaghioun SM
    Talanta; 2016 Jan; 147():621-7. PubMed ID: 26592654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid/liquid phase microextraction of five bisphenol-type endocrine disrupting chemicals by using a hollow fiber reinforced with graphene oxide nanoribbons, and determination by HPLC-PDA.
    Han X; Chen J; Qiu H; Shi YP
    Mikrochim Acta; 2019 May; 186(6):375. PubMed ID: 31127364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.