BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25201393)

  • 1. Fabrication of hydroxyapatite thin films on zirconia using a sputtering technique.
    Ozeki K; Goto T; Aoki H; Masuzawa T
    Biomed Mater Eng; 2014; 24(5):1793-802. PubMed ID: 25201393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Sr-substituted hydroxyapatite thin film by sputtering technique from mixture targets of hydroxyapatite and strontium apatite.
    Ozeki K; Goto T; Aoki H; Masuzawa T
    Biomed Mater Eng; 2014; 24(2):1447-56. PubMed ID: 24642972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the crystallinity of a sputtered hydroxyapatite film on its osteocompatibility.
    Ozeki K; Goto T; Aoki H; Masuzawa T
    Biomed Mater Eng; 2015; 26(3-4):139-47. PubMed ID: 26684886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of hydroxyapatite thin films on polyetheretherketone substrates using a sputtering technique.
    Ozeki K; Masuzawa T; Aoki H
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():576-582. PubMed ID: 28024624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion, proliferation and differentiation of osteoblasts on zirconia films prepared by cathodic arc deposition.
    Zhang S; Sun J; Xu Y; Qian S; Wang B; Liu F; Liu X
    Biomed Mater Eng; 2013; 23(5):373-85. PubMed ID: 23988709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a hydroxyapatite sputtered film subject to hydrothermal treatment using FE-SEM and STEM.
    Ozeki K; Aoki H; Masuzawa T
    Biomed Mater Eng; 2011; 21(3):179-89. PubMed ID: 22072082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment.
    Ozeki K; Aoki H; Fukui Y
    J Biomed Mater Res A; 2006 Mar; 76(3):605-13. PubMed ID: 16278871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of laser created ZRO2 and hydroxyapatite/ZrO2 films for implantology.
    Jelínek M; Dostálová T; Teuberová Z; Seydlová M; Masínová P; Kocourek T; Mróz W; Prokopiuk A; Smetana K
    Biomol Eng; 2007 Feb; 24(1):103-6. PubMed ID: 16839809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone bonding strength of sputtered hydroxyapatite films subjected to a low temperature hydrothermal treatment.
    Ozeki K; Mishima A; Yuhta T; Fukui Y; Aoki H
    Biomed Mater Eng; 2003; 13(4):451-63. PubMed ID: 14646059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic responses to zirconia with hydroxyapatite coating by aerosol deposition.
    Cho Y; Hong J; Ryoo H; Kim D; Park J; Han J
    J Dent Res; 2015 Mar; 94(3):491-9. PubMed ID: 25586588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPS-coated Ti substrate.
    Yang Y; Ong JL
    J Biomed Mater Res A; 2003 Mar; 64(3):509-16. PubMed ID: 12579565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering.
    Mello A; Hong Z; Rossi AM; Luan L; Farina M; Querido W; Eon J; Terra J; Balasundaram G; Webster T; Feinerman A; Ellis DE; Ketterson JB; Ferreira CL
    Biomed Mater; 2007 Jun; 2(2):67-77. PubMed ID: 18458438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface.
    Wang G; Meng F; Ding C; Chu PK; Liu X
    Acta Biomater; 2010 Mar; 6(3):990-1000. PubMed ID: 19800425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a magnetron-sputtered ZrSiN/ZrO2 film on the bond strength of commercially pure titanium to porcelain.
    Wang G; Wang X; Zhao Y; Guo T
    J Prosthet Dent; 2013 May; 109(5):313-8. PubMed ID: 23684281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma-electrochemical deposition of porous zirconia on titanium-based dental material and in vitro interactions with primary osteoblasts cells.
    Kaluđerović MR; Schreckenbach JP; Graf HL
    J Biomater Appl; 2016 Jan; 30(6):711-21. PubMed ID: 25887215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium.
    Rajan ST; V V AT; Terada-Nakaishi M; Chen P; Hanawa T; Nandakumar AK; Subramanian B
    Biomed Mater; 2020 Oct; 15(6):065019. PubMed ID: 32615545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetron co-sputtered silicon-containing hydroxyapatite thin films--an in vitro study.
    Thian ES; Huang J; Best SM; Barber ZH; Bonfield W
    Biomaterials; 2005 Jun; 26(16):2947-56. PubMed ID: 15603789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new way of incorporating silicon in hydroxyapatite (Si-HA) as thin films.
    Thian ES; Huang J; Best SM; Barber ZH; Bonfield W
    J Mater Sci Mater Med; 2005 May; 16(5):411-5. PubMed ID: 15875250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing and evaluation of bioactive coatings on polymeric implants.
    Rabiei A; Sandukas S
    J Biomed Mater Res A; 2013 Sep; 101(9):2621-9. PubMed ID: 23412996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways.
    Bezerra F; Ferreira MR; Fontes GN; da Costa Fernandes CJ; Andia DC; Cruz NC; da Silva RA; Zambuzzi WF
    Biotechnol Bioeng; 2017 Aug; 114(8):1888-1898. PubMed ID: 28401535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.