These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25201412)

  • 21. Protein S-Nitrosylation Regulates Xylem Vessel Cell Differentiation in Arabidopsis.
    Kawabe H; Ohtani M; Kurata T; Sakamoto T; Demura T
    Plant Cell Physiol; 2018 Jan; 59(1):17-29. PubMed ID: 29040725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity.
    Yun BW; Feechan A; Yin M; Saidi NB; Le Bihan T; Yu M; Moore JW; Kang JG; Kwon E; Spoel SH; Pallas JA; Loake GJ
    Nature; 2011 Oct; 478(7368):264-8. PubMed ID: 21964330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents.
    Kronenfeld G; Engelman R; Weisman-Shomer P; Atlas D; Benhar M
    Free Radic Biol Med; 2015 Feb; 79():138-46. PubMed ID: 25483557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Relationship Between Protein S-Nitrosylation and Human Diseases: A Review.
    Zhang Y; Deng Y; Yang X; Xue H; Lang Y
    Neurochem Res; 2020 Dec; 45(12):2815-2827. PubMed ID: 32984933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis.
    Wang W; Tang W; Ma T; Niu D; Jin JB; Wang H; Lin R
    J Integr Plant Biol; 2016 Jan; 58(1):91-103. PubMed ID: 25989254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disulfide reductase activity of thioredoxin-h2 imparts cold tolerance in Arabidopsis.
    Park JH; Lee ES; Chae HB; Paeng SK; Wi SD; Bae SB; Thi Phan KA; Lee SY
    Biochem Biophys Res Commun; 2021 Sep; 568():124-130. PubMed ID: 34217011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein denitrosylation: enzymatic mechanisms and cellular functions.
    Benhar M; Forrester MT; Stamler JS
    Nat Rev Mol Cell Biol; 2009 Oct; 10(10):721-32. PubMed ID: 19738628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation.
    Sengupta R; Holmgren A
    Antioxid Redox Signal; 2013 Jan; 18(3):259-69. PubMed ID: 22702224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein S-nitrosylation in Plasmodium falciparum.
    Wang L; Delahunty C; Prieto JH; Rahlfs S; Jortzik E; Yates JR; Becker K
    Antioxid Redox Signal; 2014 Jun; 20(18):2923-35. PubMed ID: 24256207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic identification of S-nitrosylated proteins in Arabidopsis.
    Lindermayr C; Saalbach G; Durner J
    Plant Physiol; 2005 Mar; 137(3):921-30. PubMed ID: 15734904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvements of S-nitrosylation and denitrosylation in the production of polyphenols by Inonotus obliquus.
    Zheng W; Liu Y; Pan S; Yuan W; Dai Y; Wei J
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1763-72. PubMed ID: 21468702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic profiling of nitrosative stress: protein S-oxidation accompanies S-nitrosylation.
    Wang YT; Piyankarage SC; Williams DL; Thatcher GR
    ACS Chem Biol; 2014 Mar; 9(3):821-30. PubMed ID: 24397869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AKR1A1 is a novel mammalian
    Stomberski CT; Anand P; Venetos NM; Hausladen A; Zhou HL; Premont RT; Stamler JS
    J Biol Chem; 2019 Nov; 294(48):18285-18293. PubMed ID: 31649033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A genetic analysis of nitrosative stress.
    Foster MW; Liu L; Zeng M; Hess DT; Stamler JS
    Biochemistry; 2009 Feb; 48(4):792-9. PubMed ID: 19138101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation.
    Seth D; Hess DT; Hausladen A; Wang L; Wang YJ; Stamler JS
    Mol Cell; 2018 Feb; 69(3):451-464.e6. PubMed ID: 29358078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free radicals mediate systemic acquired resistance.
    Wang C; El-Shetehy M; Shine MB; Yu K; Navarre D; Wendehenne D; Kachroo A; Kachroo P
    Cell Rep; 2014 Apr; 7(2):348-355. PubMed ID: 24726369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling.
    Ishiga Y; Watanabe M; Ishiga T; Tohge T; Matsuura T; Ikeda Y; Hoefgen R; Fernie AR; Mysore KS
    Mol Plant Microbe Interact; 2017 Oct; 30(10):829-841. PubMed ID: 28703028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development.
    Frei dit Frey N; Mbengue M; Kwaaitaal M; Nitsch L; Altenbach D; Häweker H; Lozano-Duran R; Njo MF; Beeckman T; Huettel B; Borst JW; Panstruga R; Robatzek S
    Plant Physiol; 2012 Jun; 159(2):798-809. PubMed ID: 22535420
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Shen Q; Bourdais G; Pan H; Robatzek S; Tang D
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5749-5754. PubMed ID: 28507137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of and signalling by small, redox active molecules in the plant immune response.
    Yun BW; Spoel SH; Loake GJ
    Biochim Biophys Acta; 2012 Jun; 1820(6):770-6. PubMed ID: 21723374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.