BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25201465)

  • 1. Fibulin-1 is required for bone formation and Bmp-2-mediated induction of Osterix.
    Cooley MA; Harikrishnan K; Oppel JA; Miler SF; Barth JL; Haycraft CJ; Reddy SV; Scott Argraves W
    Bone; 2014 Dec; 69():30-8. PubMed ID: 25201465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. c-Abl-dependent molecular circuitry involving Smad5 and phosphatidylinositol 3-kinase regulates bone morphogenetic protein-2-induced osteogenesis.
    Ghosh-Choudhury N; Mandal CC; Das F; Ganapathy S; Ahuja S; Ghosh Choudhury G
    J Biol Chem; 2013 Aug; 288(34):24503-17. PubMed ID: 23821550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways.
    Celil AB; Campbell PG
    J Biol Chem; 2005 Sep; 280(36):31353-9. PubMed ID: 16000303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficiency of Macf1 in osterix expressing cells decreases bone formation by Bmp2/Smad/Runx2 pathway.
    Qiu WX; Ma XL; Lin X; Zhao F; Li DJ; Chen ZH; Zhang KW; Zhang R; Wang P; Xiao YY; Miao ZP; Dang K; Wu XY; Qian AR
    J Cell Mol Med; 2020 Jan; 24(1):317-327. PubMed ID: 31709715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the effect of fibulin-1 on the differentiation of human nasal inferior turbinate-derived mesenchymal stem cells into osteoblasts.
    Hang Pham LB; Yoo YR; Park SH; Back SA; Kim SW; Bjørge I; Mano J; Jang JH
    J Biomed Mater Res A; 2017 Aug; 105(8):2291-2298. PubMed ID: 28445604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of Vascular Endothelial Growth Factor (VEGF) by osteoblast-specific transcription factor Osterix (Osx) in osteoblasts.
    Tang W; Yang F; Li Y; de Crombrugghe B; Jiao H; Xiao G; Zhang C
    J Biol Chem; 2012 Jan; 287(3):1671-8. PubMed ID: 22110141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive regulation of adult bone formation by osteoblast-specific transcription factor osterix.
    Baek WY; Lee MA; Jung JW; Kim SY; Akiyama H; de Crombrugghe B; Kim JE
    J Bone Miner Res; 2009 Jun; 24(6):1055-65. PubMed ID: 19113927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix metalloproteinase 13 (MMP13) is a direct target of osteoblast-specific transcription factor osterix (Osx) in osteoblasts.
    Zhang C; Tang W; Li Y
    PLoS One; 2012; 7(11):e50525. PubMed ID: 23185634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development.
    Zhu W; Liang G; Huang Z; Doty SB; Boskey AL
    J Biol Chem; 2011 Jul; 286(30):26794-805. PubMed ID: 21636574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatally induced inactivation of Osterix in osteoblasts results in the reduction of bone formation and maintenance.
    Baek WY; de Crombrugghe B; Kim JE
    Bone; 2010 Apr; 46(4):920-8. PubMed ID: 20026264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sprouty2 is involved in the control of osteoblast proliferation and differentiation through the FGF and BMP signaling pathways.
    Taketomi T; Onimura T; Yoshiga D; Muratsu D; Sanui T; Fukuda T; Kusukawa J; Nakamura S
    Cell Biol Int; 2018 Sep; 42(9):1106-1114. PubMed ID: 28921936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation of bone sialoprotein gene expression by Osx.
    Yang Y; Huang Y; Zhang L; Zhang C
    Biochem Biophys Res Commun; 2016 Aug; 476(4):574-579. PubMed ID: 27261434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation.
    Tang W; Li Y; Osimiri L; Zhang C
    J Biol Chem; 2011 Sep; 286(38):32995-3002. PubMed ID: 21828043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone.
    Tu Q; Valverde P; Li S; Zhang J; Yang P; Chen J
    Tissue Eng; 2007 Oct; 13(10):2431-40. PubMed ID: 17630878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein palmitoylation regulates osteoblast differentiation through BMP-induced osterix expression.
    Leong WF; Zhou T; Lim GL; Li B
    PLoS One; 2009; 4(1):e4135. PubMed ID: 19125191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ephrin B1 regulates bone marrow stromal cell differentiation and bone formation by influencing TAZ transactivation via complex formation with NHERF1.
    Xing W; Kim J; Wergedal J; Chen ST; Mohan S
    Mol Cell Biol; 2010 Feb; 30(3):711-21. PubMed ID: 19995908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice.
    Zhou X; Zhang Z; Feng JQ; Dusevich VM; Sinha K; Zhang H; Darnay BG; de Crombrugghe B
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):12919-24. PubMed ID: 20615976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability.
    Gámez B; Rodríguez-Carballo E; Bartrons R; Rosa JL; Ventura F
    J Biol Chem; 2013 May; 288(20):14264-14275. PubMed ID: 23564456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spaciotemporal association and bone morphogenetic protein regulation of sclerostin and osterix expression during embryonic osteogenesis.
    Ohyama Y; Nifuji A; Maeda Y; Amagasa T; Noda M
    Endocrinology; 2004 Oct; 145(10):4685-92. PubMed ID: 15217980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation.
    Matsubara T; Kida K; Yamaguchi A; Hata K; Ichida F; Meguro H; Aburatani H; Nishimura R; Yoneda T
    J Biol Chem; 2008 Oct; 283(43):29119-25. PubMed ID: 18703512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.