These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2520169)

  • 1. A comparison of variant theories of intact biochemical systems. II. Flux-oriented and metabolic control theories.
    Sorribas A; Savageau MA
    Math Biosci; 1989 Jun; 94(2):195-238. PubMed ID: 2520169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of variant theories of intact biochemical systems. I. Enzyme-enzyme interactions and biochemical systems theory.
    Sorribas A; Savageau MA
    Math Biosci; 1989 Jun; 94(2):161-93. PubMed ID: 2520168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways.
    Sorribas A; Savageau MA
    Math Biosci; 1989 Jun; 94(2):239-69. PubMed ID: 2520170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical systems theory: operational differences among variant representations and their significance.
    Savageau MA
    J Theor Biol; 1991 Aug; 151(4):509-30. PubMed ID: 1943154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of alternative representations for integrated biochemical systems.
    Voit EO; Savageau MA
    Biochemistry; 1987 Oct; 26(21):6869-80. PubMed ID: 3427048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical reaction network approaches to Biochemical Systems Theory.
    Arceo CP; Jose EC; Marin-Sanguino A; Mendoza ER
    Math Biosci; 2015 Nov; 269():135-52. PubMed ID: 26363083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. II. Complex systems.
    Cascante M; Franco R; Canela EI
    Math Biosci; 1989 Jun; 94(2):289-309. PubMed ID: 2520172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. I. Unbranched pathways.
    Cascante M; Franco R; Canela EI
    Math Biosci; 1989 Jun; 94(2):271-88. PubMed ID: 2520171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of biochemical systems by linear programming and general mass action model representations.
    MarĂ­n-Sanguino A; Torres NV
    Math Biosci; 2003 Aug; 184(2):187-200. PubMed ID: 12832147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical systems theory: increasing predictive power by using second-order derivatives measurements.
    Cascante M; Sorribas A; Franco R; Canela EI
    J Theor Biol; 1991 Apr; 149(4):521-35. PubMed ID: 2062106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllability of non-linear biochemical systems.
    Ervadi-Radhakrishnan A; Voit EO
    Math Biosci; 2005 Jul; 196(1):99-123. PubMed ID: 15982674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model validation and dynamic behavior.
    Sorribas A; Curto R; Cascante M
    Math Biosci; 1995 Nov; 130(1):71-84. PubMed ID: 7579903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic control therapy and biochemical systems theory: different objectives, different assumptions, different results.
    Cornish-Bowden A
    J Theor Biol; 1989 Feb; 136(4):365-77. PubMed ID: 2682007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 150 years of the mass action law.
    Voit EO; Martens HA; Omholt SW
    PLoS Comput Biol; 2015 Jan; 11(1):e1004012. PubMed ID: 25569257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature.
    Curto R; Sorribas A; Cascante M
    Math Biosci; 1995 Nov; 130(1):25-50. PubMed ID: 7579901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Canonical sensitivities: a useful tool to deal with large perturbations in metabolic network modeling.
    Guebel DV
    In Silico Biol; 2004; 4(2):163-82. PubMed ID: 15107021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient method for calculation of dynamic logarithmic gains in biochemical systems theory.
    Shiraishi F; Hatoh Y; Irie T
    J Theor Biol; 2005 May; 234(1):79-85. PubMed ID: 15721037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approximation of delays in biochemical systems.
    Mocek WT; Rudnicki R; Voit EO
    Math Biosci; 2005 Dec; 198(2):190-216. PubMed ID: 16181644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction networks and kinetics of biochemical systems.
    Arceo CPP; Jose EC; Lao AR; Mendoza ER
    Math Biosci; 2017 Jan; 283():13-29. PubMed ID: 27818257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: steady-state analysis.
    Cascante M; Curto R; Sorribas A
    Math Biosci; 1995 Nov; 130(1):51-69. PubMed ID: 7579902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.