These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 25201757)
21. Tyrosine 201 is required for constitutive activation of JAK2V617F and efficient induction of myeloproliferative disease in mice. Yan D; Hutchison RE; Mohi G Blood; 2012 Aug; 120(9):1888-98. PubMed ID: 22837531 [TBL] [Abstract][Full Text] [Related]
22. A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression. Marty C; Lacout C; Droin N; Le Couédic JP; Ribrag V; Solary E; Vainchenker W; Villeval JL; Plo I Leukemia; 2013 Nov; 27(11):2187-95. PubMed ID: 23558526 [TBL] [Abstract][Full Text] [Related]
24. Hematopoietic stem cells, progenitor cells and leukemic stem cells in adult myeloproliferative neoplasms. Ng AP Leuk Lymphoma; 2013 May; 54(5):922-33. PubMed ID: 23013358 [TBL] [Abstract][Full Text] [Related]
25. JAK2V617F Megakaryocytes Promote Hematopoietic Stem/Progenitor Cell Expansion in Mice Through Thrombopoietin/MPL Signaling. Zhang Y; Lin CHS; Kaushansky K; Zhan H Stem Cells; 2018 Nov; 36(11):1676-1684. PubMed ID: 30005133 [TBL] [Abstract][Full Text] [Related]
26. A JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects. James C; Ugo V; Casadevall N; Constantinescu SN; Vainchenker W Trends Mol Med; 2005 Dec; 11(12):546-54. PubMed ID: 16271512 [TBL] [Abstract][Full Text] [Related]
27. How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms? Chen E; Mullally A Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):268-76. PubMed ID: 25696866 [TBL] [Abstract][Full Text] [Related]
29. Epigenetic deregulated miR-375 contributes to the constitutive activation of JAK2/STAT signaling in myeloproliferative neoplasm. Yin LH; Zheng XQ; Li HY; Bi LX; Shi YF; Ye AF; Wu JB; Gao SM Leuk Res; 2015 Apr; 39(4):471-8. PubMed ID: 25666256 [TBL] [Abstract][Full Text] [Related]
30. SOCS2: inhibitor of JAK2V617F-mediated signal transduction. Quentmeier H; Geffers R; Jost E; Macleod RA; Nagel S; Röhrs S; Romani J; Scherr M; Zaborski M; Drexler HG Leukemia; 2008 Dec; 22(12):2169-75. PubMed ID: 18769447 [TBL] [Abstract][Full Text] [Related]
31. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Chen E; Schneider RK; Breyfogle LJ; Rosen EA; Poveromo L; Elf S; Ko A; Brumme K; Levine R; Ebert BL; Mullally A Blood; 2015 Jan; 125(2):327-35. PubMed ID: 25281607 [TBL] [Abstract][Full Text] [Related]
32. After 10years of JAK2V617F: Disease biology and current management strategies in polycythaemia vera. Grinfeld J; Godfrey AL Blood Rev; 2017 May; 31(3):101-118. PubMed ID: 27884555 [TBL] [Abstract][Full Text] [Related]
33. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Wernig G; Gonneville JR; Crowley BJ; Rodrigues MS; Reddy MM; Hudon HE; Walz C; Reiter A; Podar K; Royer Y; Constantinescu SN; Tomasson MH; Griffin JD; Gilliland DG; Sattler M Blood; 2008 Apr; 111(7):3751-9. PubMed ID: 18216297 [TBL] [Abstract][Full Text] [Related]
34. Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms. Hoermann G; Cerny-Reiterer S; Herrmann H; Blatt K; Bilban M; Gisslinger H; Gisslinger B; Müllauer L; Kralovics R; Mannhalter C; Valent P; Mayerhofer M FASEB J; 2012 Feb; 26(2):894-906. PubMed ID: 22051730 [TBL] [Abstract][Full Text] [Related]
35. Inflammation as a Driver of Clonal Evolution in Myeloproliferative Neoplasm. Fleischman AG Mediators Inflamm; 2015; 2015():606819. PubMed ID: 26538830 [TBL] [Abstract][Full Text] [Related]
36. Lhx2 expression in hematopoietic progenitor/stem cells in vivo causes a chronic myeloproliferative disorder and altered globin expression. Richter K; Pinto do O P; Hägglund AC; Wahlin A; Carlsson L Haematologica; 2003 Dec; 88(12):1336-47. PubMed ID: 14687986 [TBL] [Abstract][Full Text] [Related]
37. Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms. Sharma V; Wright KL; Epling-Burnette PK; Reuther GW Front Immunol; 2020; 11():604142. PubMed ID: 33329600 [TBL] [Abstract][Full Text] [Related]
38. Activating JAK2 mutants reveal cytokine receptor coupling differences that impact outcomes in myeloproliferative neoplasm. Yao H; Ma Y; Hong Z; Zhao L; Monaghan SA; Hu MC; Huang LJ Leukemia; 2017 Oct; 31(10):2122-2131. PubMed ID: 28057939 [TBL] [Abstract][Full Text] [Related]
39. Evolution of secondary hematologic disorders: preMDS-->MDS-->sAML. Preisler HD Cancer Treat Res; 2001; 108():185-230. PubMed ID: 11702600 [No Abstract] [Full Text] [Related]
40. What is the role of JAK2(V617F) mutation in leukemic transformation of myeloproliferative neoplasms? Lopes da Silva R; Ribeiro P; Lourenço A; Santos SC; Santos M; Costa I; de Sousa AB Lab Hematol; 2011 Mar; 17(1):12-6. PubMed ID: 21421540 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]