These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25201814)

  • 1. The "EyeCane", a new electronic travel aid for the blind: Technology, behavior & swift learning.
    Maidenbaum S; Hanassy S; Abboud S; Buchs G; Chebat DR; Levy-Tzedek S; Amedi A
    Restor Neurol Neurosci; 2014; 32(6):813-24. PubMed ID: 25201814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waist-up protection for blind individuals using the EyeCane as a primary and secondary mobility aid.
    Buchs G; Simon N; Maidenbaum S; Amedi A
    Restor Neurol Neurosci; 2017; 35(2):225-235. PubMed ID: 28157111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of extended sensory range via the EyeCane sensory substitution device on the characteristics of visionless virtual navigation.
    Maidenbaum S; Levy-Tzedek S; Chebat DR; Namer-Furstenberg R; Amedi A
    Multisens Res; 2014; 27(5-6):379-97. PubMed ID: 25693302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blindness and the Reliability of Downwards Sensors to Avoid Obstacles: A Study with the EyeCane.
    Bleau M; Paré S; Djerourou I; Chebat DR; Kupers R; Ptito M
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, development, and clinical evaluation of the electronic mobility cane for vision rehabilitation.
    Bhatlawande S; Mahadevappa M; Mukherjee J; Biswas M; Das D; Gupta S
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1148-59. PubMed ID: 24860035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A detachable electronic device for use with a long white cane to assist with mobility.
    O'Brien EE; Mohtar AA; Diment LE; Reynolds KJ
    Assist Technol; 2014; 26(4):219-26. PubMed ID: 25771607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Navigation using sensory substitution in real and virtual mazes.
    Chebat DR; Maidenbaum S; Amedi A
    PLoS One; 2015; 10(6):e0126307. PubMed ID: 26039580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Navigation aid for blind persons by visual-to-auditory sensory substitution: A pilot study.
    Neugebauer A; Rifai K; Getzlaff M; Wahl S
    PLoS One; 2020; 15(8):e0237344. PubMed ID: 32818953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assistive obstacle detection and navigation devices for vision-impaired users.
    Ong SK; Zhang J; Nee AY
    Disabil Rehabil Assist Technol; 2013 Sep; 8(5):409-16. PubMed ID: 23350879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Virtual White Cane Network for navigating people with visual impairment.
    Gao Y; Chandrawanshi R; Nau AC; Tse ZT
    Proc Inst Mech Eng H; 2015 Sep; 229(9):681-8. PubMed ID: 26334037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Augmented White Cane with obstacle height and distance feedback.
    Pyun R; Kim Y; Wespe P; Gassert R; Schneller S
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650358. PubMed ID: 24187177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal sensing and intuitive steering assistance improve navigation and mobility for people with impaired vision.
    Slade P; Tambe A; Kochenderfer MJ
    Sci Robot; 2021 Oct; 6(59):eabg6594. PubMed ID: 34644159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceiving space and optical cues via a visuo-tactile sensory substitution system: a methodological approach for training of blind subjects for navigation.
    Segond H; Weiss D; Kawalec M; Sampaio E
    Perception; 2013; 42(5):508-28. PubMed ID: 23964377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving obstacle detection by redesign of walking canes for blind persons.
    Schellingerhout R; Bongers RM; van Grinsven R; Smitsman AW; Van Galen GP
    Ergonomics; 2001 Apr; 44(5):513-26. PubMed ID: 11345494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended multisensory space in blind cane users.
    Serino A; Bassolino M; Farnè A; Làdavas E
    Psychol Sci; 2007 Jul; 18(7):642-8. PubMed ID: 17614874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion and surface texture classification.
    Kuc R
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1173-80. PubMed ID: 12374342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial navigation with horizontally spatialized sounds in early and late blind individuals.
    Paré S; Bleau M; Djerourou I; Malotaux V; Kupers R; Ptito M
    PLoS One; 2021; 16(2):e0247448. PubMed ID: 33635892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Unfolding Space Glove: A Wearable Spatio-Visual to Haptic Sensory Substitution Device for Blind People.
    Kilian J; Neugebauer A; Scherffig L; Wahl S
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field testing of two electronic mobility aid devices for persons who are deaf-blind.
    Vincent C; Routhier F; Martel V; Mottard MÈ; Dumont F; Côté L; Cloutier D
    Disabil Rehabil Assist Technol; 2014 Sep; 9(5):414-20. PubMed ID: 24266810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.