These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 25201909)
21. Effect of surface mechanical attrition treatment on biodegradable Mg-1Ca alloy. Li N; Li YD; Li YX; Wu YH; Zheng YF; Han Y Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():314-21. PubMed ID: 24411383 [TBL] [Abstract][Full Text] [Related]
22. The Control of Nanotube Morphology Using Various Factors for Dental Implant. Kim ES; Jeong YH; Choe HC J Nanosci Nanotechnol; 2015 Jan; 15(1):181-4. PubMed ID: 26328325 [TBL] [Abstract][Full Text] [Related]
23. Physicochemical, morphological, and biological analyses of Ti-15Mo alloy surface modified by laser beam irradiation. Pires LC; Guastaldi FPS; Nogueira AVB; Oliveira NTC; Guastaldi AC; Cirelli JA Lasers Med Sci; 2019 Apr; 34(3):537-546. PubMed ID: 30259335 [TBL] [Abstract][Full Text] [Related]
24. Magnesium alloys as implant materials--principles of property design for Mg-RE alloys. Hort N; Huang Y; Fechner D; Störmer M; Blawert C; Witte F; Vogt C; Drücker H; Willumeit R; Kainer KU; Feyerabend F Acta Biomater; 2010 May; 6(5):1714-25. PubMed ID: 19788945 [TBL] [Abstract][Full Text] [Related]
25. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Li Z; Gu X; Lou S; Zheng Y Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191 [TBL] [Abstract][Full Text] [Related]
26. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation. Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262 [TBL] [Abstract][Full Text] [Related]
27. Preparation and properties of biomedical porous titanium alloys by gelcasting. Yang D; Shao H; Guo Z; Lin T; Fan L Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152 [TBL] [Abstract][Full Text] [Related]
28. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408 [TBL] [Abstract][Full Text] [Related]
29. In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model. Yang JX; Cui FZ; Lee IS; Zhang Y; Yin QS; Xia H; Yang SX J Biomater Appl; 2012 Aug; 27(2):153-64. PubMed ID: 21363872 [TBL] [Abstract][Full Text] [Related]
30. The bone response of oxidized bioactive and non-bioactive titanium implants. Sul YT; Johansson C; Byon E; Albrektsson T Biomaterials; 2005 Nov; 26(33):6720-30. PubMed ID: 15975649 [TBL] [Abstract][Full Text] [Related]
31. Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopaedics. Harcuba P; Bačáková L; Stráský J; Bačáková M; Novotná K; Janeček M J Mech Behav Biomed Mater; 2012 Mar; 7():96-105. PubMed ID: 22340689 [TBL] [Abstract][Full Text] [Related]
32. Surface modification by alkali and heat treatments in titanium alloys. Lee BH; Do Kim Y; Shin JH; Hwan Lee K J Biomed Mater Res; 2002 Sep; 61(3):466-73. PubMed ID: 12115472 [TBL] [Abstract][Full Text] [Related]
33. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
34. The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy. Gunde P; Furrer A; Hänzi AC; Schmutz P; Uggowitzer PJ J Biomed Mater Res A; 2010 Feb; 92(2):409-18. PubMed ID: 19191312 [TBL] [Abstract][Full Text] [Related]
35. Effects of CO2 laser irradiation on the surface properties of magnesia-partially stabilised zirconia (MgO-PSZ) bioceramic and the subsequent improvements in human osteoblast cell adhesion. Hao L; Lawrence J; Chian KS J Biomater Appl; 2004 Oct; 19(2):81-105. PubMed ID: 15381783 [TBL] [Abstract][Full Text] [Related]
36. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials. Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218 [TBL] [Abstract][Full Text] [Related]
37. Influence of the grain size on the in vivo degradation behaviour of the magnesium alloy LAE442. Ullmann B; Reifenrath J; Seitz JM; Bormann D; Meyer-Lindenberg A Proc Inst Mech Eng H; 2013 Mar; 227(3):317-26. PubMed ID: 23662348 [TBL] [Abstract][Full Text] [Related]
38. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Spriano S; Sarath Chandra V; Cochis A; Uberti F; Rimondini L; Bertone E; Vitale A; Scolaro C; Ferrari M; Cirisano F; Gautier di Confiengo G; Ferraris S Mater Sci Eng C Mater Biol Appl; 2017 May; 74():542-555. PubMed ID: 28254329 [TBL] [Abstract][Full Text] [Related]
39. Biocompatibility of ultrafine grained zircaloy-2 produced by cryorolling for medical applications. Trivedi P; Goel S; Das S; Jayaganthan R; Lahiri D; Roy P Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():309-15. PubMed ID: 25491992 [TBL] [Abstract][Full Text] [Related]
40. Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding. Dong Y; Li X; Tian L; Bell T; Sammons RL; Dong H Acta Biomater; 2011 Jan; 7(1):447-57. PubMed ID: 20727993 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]