These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25201967)

  • 1. Collapse of an ecological network in Ancient Egypt.
    Yeakel JD; Pires MM; Rudolf L; Dominy NJ; Koch PL; Guimarães PR; Gross T
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14472-7. PubMed ID: 25201967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pleistocene megafaunal interaction networks became more vulnerable after human arrival.
    Pires MM; Koch PL; Fariña RA; de Aguiar MA; dos Reis SF; Guimarães PR
    Proc Biol Sci; 2015 Sep; 282(1814):. PubMed ID: 26336175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian extinction in ancient Egypt, similarities with the southern Levant.
    Bar-Oz G; Tsahar E; Izhaki I; Lev-Yadun S
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):E238. PubMed ID: 25587141
    [No Abstract]   [Full Text] [Related]  

  • 4. Reply to Evans and Bar-Oz et al.: Recovering ecological pattern and process in Ancient Egypt.
    Yeakel JD; Pires MM; Rudolf L; Dominy NJ; Koch PL; Guimarães PR; Gross T
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):E240. PubMed ID: 25587139
    [No Abstract]   [Full Text] [Related]  

  • 5. Ancient Egypt's fluctuating fauna: ecological events or cultural constructs?
    Evans L
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):E239. PubMed ID: 25587140
    [No Abstract]   [Full Text] [Related]  

  • 6. Larisa DeSantis.
    DeSantis L
    Curr Biol; 2021 Jul; 31(13):R832-R833. PubMed ID: 34256910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia.
    van der Kaars S; Miller GH; Turney CS; Cook EJ; Nürnberg D; Schönfeld J; Kershaw AP; Lehman SJ
    Nat Commun; 2017 Jan; 8():14142. PubMed ID: 28106043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trophic redundancy reduces vulnerability to extinction cascades.
    Sanders D; Thébault E; Kehoe R; Frank van Veen FJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2419-2424. PubMed ID: 29467292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying co-extinctions and ecosystem service vulnerability in coastal ecosystems experiencing climate warming.
    Wilkes LN; Barner AK; Keyes AA; Morton D; Byrnes JEK; Dee LE
    Glob Chang Biol; 2024 Jul; 30(7):e17422. PubMed ID: 39034898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying ecological impacts of mass extinctions with network analysis of fossil communities.
    Muscente AD; Prabhu A; Zhong H; Eleish A; Meyer MB; Fox P; Hazen RM; Knoll AH
    Proc Natl Acad Sci U S A; 2018 May; 115(20):5217-5222. PubMed ID: 29686079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topology of plant-pollinator networks that are vulnerable to collapse from species extinction.
    Campbell C; Yang S; Shea K; Albert R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021924. PubMed ID: 23005802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Historical records reveal the distinctive associations of human disturbance and extreme climate change with local extinction of mammals.
    Wan X; Jiang G; Yan C; He F; Wen R; Gu J; Li X; Ma J; Stenseth NC; Zhang Z
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):19001-19008. PubMed ID: 31481618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction.
    Tóth AB; Lyons SK; Barr WA; Behrensmeyer AK; Blois JL; Bobe R; Davis M; Du A; Eronen JT; Faith JT; Fraser D; Gotelli NJ; Graves GR; Jukar AM; Miller JH; Pineda-Munoz S; Soul LC; Villaseñor A; Alroy J
    Science; 2019 Sep; 365(6459):1305-1308. PubMed ID: 31604240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organism activity levels predict marine invertebrate survival during ancient global change extinctions.
    Clapham ME
    Glob Chang Biol; 2017 Apr; 23(4):1477-1485. PubMed ID: 27570079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating co-extinction threats in terrestrial ecosystems.
    Doherty S; Saltré F; Llewelyn J; Strona G; Williams SE; Bradshaw CJA
    Glob Chang Biol; 2023 Sep; 29(18):5122-5138. PubMed ID: 37386726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using paleo-archives to safeguard biodiversity under climate change.
    Fordham DA; Jackson ST; Brown SC; Huntley B; Brook BW; Dahl-Jensen D; Gilbert MTP; Otto-Bliesner BL; Svensson A; Theodoridis S; Wilmshurst JM; Buettel JC; Canteri E; McDowell M; Orlando L; Pilowsky JA; Rahbek C; Nogues-Bravo D
    Science; 2020 Aug; 369(6507):. PubMed ID: 32855310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental change makes robust ecological networks fragile.
    Strona G; Lafferty KD
    Nat Commun; 2016 Aug; 7():12462. PubMed ID: 27511722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecological dynamics of terrestrial and freshwater ecosystems across three mid-Phanerozoic mass extinctions from northwest China.
    Huang Y; Chen ZQ; Roopnarine PD; Benton MJ; Yang W; Liu J; Zhao L; Li Z; Guo Z
    Proc Biol Sci; 2021 Mar; 288(1947):20210148. PubMed ID: 33726593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure.
    Binzer A; Guill C; Rall BC; Brose U
    Glob Chang Biol; 2016 Jan; 22(1):220-7. PubMed ID: 26365694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America.
    Barnosky AD; Lindsey EL; Villavicencio NA; Bostelmann E; Hadly EA; Wanket J; Marshall CR
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):856-61. PubMed ID: 26504219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.