These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2520211)

  • 1. A study on continuous follow-the-leader (FTL) gaits: an effective walking algorithm over rough terrain.
    Song SM; Choi BS
    Math Biosci; 1989 Dec; 97(2):199-233. PubMed ID: 2520211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fault tolerant gait for a hexapod robot over uneven terrain.
    Yang JM; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):172-80. PubMed ID: 18244739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All common bipedal gaits emerge from a single passive model.
    Gan Z; Yesilevskiy Y; Zaytsev P; Remy CD
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal quasi-static stability predicts changes in dog gait on rough terrain.
    Wilshin S; Reeve MA; Haynes GC; Revzen S; Koditschek DE; Spence AJ
    J Exp Biol; 2017 May; 220(Pt 10):1864-1874. PubMed ID: 28264903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biped gait stabilization via foot placement.
    Townsend MA
    J Biomech; 1985; 18(1):21-38. PubMed ID: 3980486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
    Grabowska M; Godlewska E; Schmidt J; Daun-Gruhn S
    J Exp Biol; 2012 Dec; 215(Pt 24):4255-66. PubMed ID: 22972892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots.
    Hao Q; Wang Z; Wang J; Chen G
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.
    Cai X; Han G; Song X; Wang J
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2618-2627. PubMed ID: 28092516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compliant leg behaviour explains basic dynamics of walking and running.
    Geyer H; Seyfarth A; Blickhan R
    Proc Biol Sci; 2006 Nov; 273(1603):2861-7. PubMed ID: 17015312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the stability of generalized wave gaits.
    Zhang CD; Song SM
    Math Biosci; 1993 May; 115(1):1-32. PubMed ID: 8507986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
    Krasny DP; Orin DE
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1685-96. PubMed ID: 15462436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for multiple dynamic climbing gait families.
    Brown JM; Austin MP; Miller BD; Clark JE
    Bioinspir Biomim; 2019 Feb; 14(3):036001. PubMed ID: 30742587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive locomotion: Investigation and modeling of physically-paired humans while walking.
    Lanini J; Duburcq A; Razavi H; Le Goff CG; Ijspeert AJ
    PLoS One; 2017; 12(9):e0179989. PubMed ID: 28877161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot.
    Webber JT; Raichlen DA
    J Exp Biol; 2016 Dec; 219(Pt 23):3729-3737. PubMed ID: 27903628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climbing favours the tripod gait over alternative faster insect gaits.
    Ramdya P; Thandiackal R; Cherney R; Asselborn T; Benton R; Ijspeert AJ; Floreano D
    Nat Commun; 2017 Feb; 8():14494. PubMed ID: 28211509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled oscillators utilised as gait rhythm generators of a two-legged walking machine.
    ZieliƄska T
    Biol Cybern; 1996 Mar; 74(3):263-73. PubMed ID: 8867472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leg force interference in polypedal locomotion.
    Weihmann T
    Sci Adv; 2018 Sep; 4(9):eaat3721. PubMed ID: 30191178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative kinematics of two walking frame gaits.
    Crosbie J
    J Orthop Sports Phys Ther; 1994 Oct; 20(4):186-92. PubMed ID: 7987378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sideways crab-walking is faster and more efficient than forward walking for a hexapod robot.
    Chen Y; Grezmak JE; Graf NM; Daltorio KA
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35439747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.